845 resultados para sensory ecology
Resumo:
This paper contains an outline of study for hearing impaired children to help them learn how to form and react to sensory imagery.
Resumo:
This study discusses a project undertaken to determine the benefits of sensory aids for hearing impaired children based on parental observations over a twelve month period.
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
Many shorebirds are long-distance migrants and depend on the energy gained at stopover sites to complete migration. Competing hypotheses have described strategies used by migrating birds; the energy-selection hypothesis predicts that shorebirds attempt to maximize energy gained at stopover sites, whereas the time-selection hypothesis predicts that shorebirds attempt to minimize time spent at stopover sites. The energy- and time-selection hypotheses both predict that birds in better condition will depart sites sooner. However, numerous studies of stopover duration have found little support for this prediction, leading to the suggestion that migrating birds operate under energy and time constraints for only a small portion of the migratory season. During fall migration 2002, we tested the prediction that birds in better condition depart stopover sites sooner by examining the relationship between stopover duration and body condition for migrating Least Sandpipers (Calidris minutilla) at three stopover sites in the Lower Mississippi Alluvial Valley. We also tested the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team that shorebirds stay in the Mississippi Valley for 10 d. The assumption of 10 d was used to estimate the amount of habitat required by shorebirds in the Mississippi Valley during fall migration; a period longer than 10 d would increase the estimate of the amount habitat required. We used multiple-day constancy models of apparent survival and program MARK to estimate stopover duration for 293 individually color-marked and resighted Least Sandpipers. We found that a four-day constancy interval and a site x quadratic time trend interaction term best modeled apparent survival. We found only weak support for body condition as a factor explaining length of stopover duration, which is consistent with findings from similar work. Stopover duration estimates were 4.1 d (95% CI = 2.8–6.1) for adult Least Sandpipers at Bald Knob National Wildlife Refuge, Arkansas, 6.5 d (95% CI = 4.9–8.7) for adult and 6.1 d (95% CI =4.2–9.1) for juvenile Least Sandpipers at Yazoo National Wildlife Refuge, Mississippi, and 6.9 d (95% CI = 5.5–8.7) for juvenile Least Sandpipers at Morgan Brake National Wildlife Refuge, Mississippi. Based on our estimates of stopover duration and the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team, there is sufficient habitat in the lower Mississippi Valley to support shorebirds during fall migration.
Resumo:
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versusWTmice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker -conotoxin. In WT mice, PSNL caused a significant increase in -conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in -conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltagedependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.
Resumo:
A modelling study has been undertaken to assess the likely impacts of climate change on water quality across the UK. A range of climate change scenarios have been used to generate future precipitation, evaporation and temperature time series at a range of catchments across the UK. These time series have then been used to drive the Integrated Catchment (INCA) suite of flow, water quality and ecological models to simulate flow, nitrate, ammonia, total and soluble reactive phosphorus, sediments, macrophytes and epiphytes in the Rivers Tamar, Lugg, Tame, Kennet, Tweed and Lambourn. A wide range of responses have been obtained with impacts varying depending on river character, catchment location, flow regime, type of scenario and the time into the future. Essentially upland reaches of river will respond differently to lowland reaches of river, and the responses will vary depending on the water quality parameter of interest.