534 resultados para senescence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging (senescence) has long been a difficult issue to be experimentally analyzed because of stochastic processes, which contrast with the programmed events during early development. However, we have recently started to learn the molecular mechanisms that control aging. Studies of the mutant mouse, klotho, showing premature aging, raise a possibility that mammals have an “anti-aging hormone.” A decrease of cell proliferation ability caused by the telomeres is also tightly linked to senescence. Frontier experimental studies of aging at the molecular level are leading to fascinating hypotheses that aging is the price we had to pay for the evolution of the sexual reproduction system that produces a variety of genetic information and complex body structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-gene mutations that extend lifespan provide valuable tools for the exploration of the molecular basis for age-related changes in cell and tissue function and for the pathophysiology of age-dependent diseases. We show here that mice homozygous for loss-of-function mutations at the Pit1 (Snell dwarf) locus show a >40% increase in mean and maximal longevity on the relatively long-lived (C3H/HeJ × DW/J)F1 background. Mutant dwJ/dw animals show delays in age-dependent collagen cross-linking and in six age-sensitive indices of immune system status. These findings thus demonstrate that a single gene can control maximum lifespan and the timing of both cellular and extracellular senescence in a mammal. Pituitary transplantation into dwarf mice does not reverse the lifespan effect, suggesting that the effect is not due to lowered prolactin levels. In contrast, homozygosity for the Ghrhrlit mutation, which like the Pit1dw mutation lowers plasma growth hormone levels, does lead to a significant increase in longevity. Male Snell dwarf mice, unlike calorically restricted mice, become obese and exhibit proportionately high leptin levels in old age, showing that their exceptional longevity is not simply due to alterations in adiposity per se. Further studies of the Pit1dw mutant, and the closely related, long-lived Prop-1df (Ames dwarf) mutant, should provide new insights into the hormonal regulation of senescence, longevity, and late life disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and inflorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO4, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two genes coding for S-adenosyl-l-methionine synthase (SAMS, EC 2.5.1.6) were previously isolated from pea (Pisum sativum) ovaries. Both SAMS genes were highly homologous throughout their coding regions but showed a certain degree of sequence divergence within the 5′ and the 3′ untranslated regions. These regions have been used as gene-specific probes to analyze the differential expression of SAMS1 and SAMS2 genes in pea plants. The ribonuclease protection assay revealed different expression patterns for each individual gene. SAMS1 was strongly expressed in nearly all tissues, especially in roots. SAMS2 expression was weaker, reaching its highest level at the apex. Following pollination, SAMS1 was specifically up-regulated, whereas SAMS2 was expressed constitutively. The up-regulation of SAMS1 during ovary development was also observed in unpollinated ovaries treated with auxins. In unpollinated ovaries an increase in SAMS1 expression was observed as a consequence of ethylene production associated with the emasculation process. In senescing ovaries both SAMS1 and SAMS2 genes showed increased expression. Ethylene treatment of unpollinated ovaries led to an increase in the SAMS1 mRNA level. However, SAMS2 expression remained unchangeable after ethylene treatment, indicating that SAMS2 induction during ovary senescence was not ethylene dependent. SAMS mRNAs were localized by in situ hybridization at the endocarp of developing fruits and in the ovules of senescing ovaries. Our results indicate that the transcriptional regulation of SAMS genes is developmentally controlled in a specific way for each gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytokinin group of plant hormones regulates aspects of plant growth and development, including the release of lateral buds from apical dominance and the delay of senescence. In this work the native promoter of a cytokinin synthase gene (ipt) was removed and replaced with a Cu-controllable promoter. Tobacco (Nicotiana tabacum L. cv tabacum) transformed with this Cu-inducible ipt gene (Cu-ipt) was morphologically identical to controls under noninductive conditions in almost all lines produced. However, three lines grew in an altered state, which is indicative of cytokinin overproduction and was confirmed by a full cytokinin analysis of one of these lines. The in vitro treatment of morphologically normal Cu-ipt transformants with Cu2+ resulted in delayed leaf senescence and an increase in cytokinin concentration in the one line analyzed. In vivo, inductive conditions resulted in a significant release of lateral buds from apical dominance. The morphological changes seen during these experiments may reflect the spatial aspect of control exerted by this gene expression system, namely expression from the root tissue only. These results confirmed that endogenous cytokinin concentrations in tobacco transformants can be temporally and spatially controlled by the induction of ipt gene expression through the Cu-controllable gene-expression system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern blot analysis of total DNA from E. chlorotica indicated that algal genes, i.e., rbcL, rbcS, psaB, psbA, and 16S rRNA are present in the animal. These genes are typically localized to the plastid genome in higher plants and algae except rbcS, which is nuclear-encoded in higher plants and green (chlorophyll a/b) algae. Our analysis suggests, however, that similar to the few other chromophytes (chlorophyll a/c) examined, rbcS is chloroplast encoded in V. litorea. Levels of psbA transcripts remained constant in E. chlorotica starved for 2 and 3 months and then gradually declined over the next 5 months corresponding with senescence of the animal in culture and in nature. The RNA synthesis inhibitor 6-methylpurine reduced the accumulation of psbA transcripts confirming active transcription. In contrast to psbA, levels of 16S rRNA transcripts remained constant throughout the starvation period. The levels of the photosystem II proteins, D1 and CP43, were high at 2 and 4 months of starvation and remained constant at a lower steady-state level after 6 months. In contrast, D2 protein levels, although high at 2 and 4 months, were very low at all other periods of starvation. At 8 months, de novo synthesis of several thylakoid membrane-enriched proteins, including D1, still occurred. To our knowledge, these results represent the first molecular evidence for active transcription and translation of algal chloroplast genes in an animal host and are discussed in relation to the endosymbiotic theory of eukaryote origins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 is a multifunctional tumor suppressor protein involved in the negative control of cell growth. Mutations in p53 cause alterations in cellular phenotype, including immortalization, neoplastic transformation, and resistance to DNA-damaging drugs. To help dissect distinct functions of p53, a set of genetic suppressor elements (GSEs) capable of inducing different p53-related phenotypes in rodent embryo fibroblasts was isolated from a retroviral library of random rat p53 cDNA fragments. All the GSEs were 100-300 nucleotides long and were in the sense orientation. They fell into four classes, corresponding to the transactivator (class I), DNA-binding (class II), and C-terminal (class III) domains of the protein and the 3'-untranslated region of the mRNA (class IV). GSEs in all four classes promoted immortalization of primary cells, but only members of classes I and III cooperated with activated ras to transform cells, and only members of class III conferred resistance to etoposide and strongly inhibited transcriptional transactivation by p53. These observations suggest that processes related to control of senescence, response to DNA damage, and transformation involve different functions of the p53 protein and furthermore indicate a regulatory role for the 3'-untranslated region of p53 mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure of reversible immortalization of primary cells was devised by retrovirus-mediated transfer of an oncogene that could be subsequently excised by site-specific recombination. This study focused on the early stages of immortalization: global induction of proliferation and life span extension of cell populations. Comparative analysis of Cre/LoxP and FLP/FRT recombination in this system indicated that only Cre/LoxP operates efficiently in primary cells. Pure populations of cells in which the oncogene is permanently excised were obtained, following differential selection of the cells. Cells reverted to their preimmortalized state, as indicated by changes in growth characteristics and p53 levels, and their fate conformed to the telomere hypothesis of replicative cell senescence. By permitting temporary and controlled expansion of primary cell populations without retaining the transferred oncogene, this strategy may facilitate gene therapy manipulations of cells unresponsive to exogenous growth factors and make practical gene targeting by homologous recombination in somatic cells. The combination of retroviral transfer and site-specific recombination should also extend gene expression studies to situations previously inaccessible to experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial injury induces a series of proliferative, vasoactive, and inflammatory responses that lead to vascular proliferative diseases, including atherosclerosis and restenosis. Although several factors have been defined which stimulate this process in vivo, the role of specific cellular gene products in limiting this response is not well understood. The p21 cyclin-dependent kinase inhibitor affects cell cycle progression, senescence, and differentiation in transformed cells, but its expression in injured blood vessels has not been investigated. In this study, we report that p21 protein is induced in porcine arteries following balloon catheter injury and suggest that p21 is likely to play a role in limiting arterial cell proliferation in vivo. Vascular endothelial and smooth muscle cell growth was arrested through the ability of p21 to inhibit progression through the G1 phase of the cell cycle. Following injury to porcine arteries, p21 gene product was detected in the neointima and correlated inversely with the location and kinetics of intimal cell proliferation. Direct gene transfer of p21 using an adenoviral vector into balloon injured porcine arteries inhibited the development of intimal hyperplasia. Taken together, these findings suggest that p21, and possibly related cyclin-dependent kinase inhibitors, may normally regulate cellular proliferation following arterial injury, and strategies to increase its expression may prove therapeutically beneficial in vascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular senescence is defined by the limited proliferative capacity of normal cultured cells. Immortal cells overcome this regulation and proliferate indefinitively. One step in the immortalization process may be reactivation of telomerase activity, a ribonucleoprotein complex, which, by de novo synthesized telomeric TTAGGG repeats, can prevent shortening of the telomeres. Here we show that immortal human skin keratinocytes, irrespective of whether they were immortalized by simian virus 40, human papillomavirus 16, or spontaneously, as well as cell lines established from human skin squamous cell carcinomas exhibit telomerase activity. Unexpectedly, four of nine samples of intact human skin also were telomerase positive. By dissecting the skin we could show that the dermis and cultured dermal fibroblasts were telomerase negative. The epidermis and cultured skin keratinocytes, however, reproducibly exhibited enzyme activity. By separating different cell layers of the epidermis this telomerase activity could be assigned to the proliferative basal cells. Thus, in addition to hematopoietic cells, the epidermis, another example of a permanently regenerating human tissue, provides a further exception of the hypothesis that all normal human somatic tissues are telomerase deficient. Instead, these data suggest that in addition to contributing to the permanent proliferation capacity of immortal and tumor-derived keratinocytes, telomerase activity may also play a similar role in the lifetime regenerative capacity of normal epidermis in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because repeated injury of the endothelium and subsequent turnover of intimal and medial cells have been implicated in atherosclerosis, we examined telomere length, a marker of somatic cell turnover, in cells from these tissues. Telomere lengths were assessed by Southern analysis of terminal restriction fragments (TRFs) generated by HinfI/Rsa I digestion of human genomic DNA. Mean TRF length decreased as a function of population doublings in human endothelial cell cultures from umbilical veins, iliac arteries, and iliac veins. When endothelial cells were examined for mean TRF length as a function of donor age, there was a significantly greater rate of decrease for cells from iliac arteries than from iliac veins (102 bp/yr vs. 47 bp/yr, respectively, P < 0.05), consistent with higher hemodynamic stress and increased cell turnover in arteries. Moreover, the rate of telomere loss as a function of donor age was greater in the intimal DNA of iliac arteries compared to that of the internal thoracic arteries (147 bp/yr vs. 87 bp/yr, respectively, P < 0.05), a region of the arterial tree subject to less hemodynamic stress. This indicates that the effect is not tissue specific. DNA from the medial tissue of the iliac and internal thoracic arteries showed no significant difference in the rates of decrease, suggesting that chronic stress leading to cellular senescence is more pronounced in the intima than in the media. These observations extend the use of telomere size as a marker for the replicative history of cells and are consistent with a role for focal replicative senescence in cardiovascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.