995 resultados para self-adhesive cements
Resumo:
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton [1-4]. In the context of stable adhesion [1], cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis [2]. Here actin polymerization has been proposed to drive cell surfaces together [5], although F-actin reorganization also occurs as cell contacts mature [6]. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere [7]. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.
Resumo:
Classical cadherins mediate cell recognition and cohesion in many tissues of the body. It is increasingly apparent that dynamic cadherin contacts play key roles during morphogenesis and that a range of cell signals are activated as cells form contacts with one another. It has been difficult, however, to determine whether these signals represent direct downstream consequences of cadherin ligation or are juxtacrine signals that are activated when cadherin adhesion brings cell surfaces together but are not direct downstream targets of cadherin signaling. In this study, we used a functional cadherin ligand (hE/Fc) to directly test whether E-cadherin ligation regulates phosphatidylinositol 3-kinase (PI 3-kinase) and Rac signaling. We report that homophilic cadherin ligation recruits Rae to nascent adhesive contacts and specifically stimulates Rae signaling. Adhesion to hE/Fc also recruits PI 3-kinase to the cadherin complex, leading to the production of phosphatidylinositol 3,4,5-trisphosphate in nascent cadherin contacts. Rae activation involved an early phase, which was PI 3-kinase-independent, and a later amplification phase, which was inhibited by wortmannin. PI 3-kinase and Rae activity were necessary for productive adhesive contacts to form following initial homophilic ligation. We conclude that E-cadherin is a cellular receptor that is activated upon homophilic ligation to signal through PI 3-kinase and Rae. We propose that a key function of these cadherin-activated signals is to control adhesive contacts, probably via regulation of the actin cytoskeleton, which ultimately serves to mediate adhesive cell-cell recognition.
Resumo:
Impaired self-awareness is a common problem following traumatic brain injury. Without adequate self-awareness, a person's motivation to participate in rehabilitation may be limited, which in turn can have an adverse effect on his or her functional outcome. For this reason, it is important that brain injury rehabilitation professionals, including occupational therapists, both understand this phenomenon and use assessment and treatment approaches aimed at improving clients' self-awareness. This article provides an overview of self-awareness, reviewing the distinction between intellectual and online awareness. The current role of occupational therapy in the assessment of self-awareness is highlighted and the guidelines for new assessments of self-awareness suitable for use in occupational therapy are explored.
Resumo:
This investigation re-examines theoretical aspects of the allowance for effects of thermodynamic non-ideality on the characterization of protein self-association by frontal exclusion chromatography, and thereby provides methods of analysis with greater thermodynamic rigor than those used previously. Their application is illustrated by reappraisal of published exclusion chromatography data for hemoglobin on the controlled-pore-glass matrix CPG-120. The equilibrium constant of 100/M that is obtained for dimerization of the (02 species by this means is also deduced from re-examination of published studies of concentrated hemoglobin solutions by osmotic pressure and sedimentation equilibrium methods. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Adiabatic self-heating tests were carried out on five New Zealand coal samples ranging in rank from lignite to high-volatile bituminous. Kinetic parameters of oxidation were obtained front the self-heating curves assuming Arrhenius behaviour. The activation energy E (kJ mol(-1)) and the pre-exponential factor A (s(-1)) were determined in the temperature range of 70-140 degreesC. The activation energy exhibited a definite rank relationship with a minimum E of 55 kJ mol(-1) occurring at a Suggate rank of similar to6.2 corresponding to subbituminous C. Either side of this rank there was a noticeable increase in the activation energy indicating lower reactivity of the coal. A similar rank trend was also observed in the R-70 self-heating rate index values that were taken from the initial portion of the self-heating curve front 40 to 70 degreesC. From these results it is clear that the adiabatic method is capable of providing reliable kinetic parameters of coal oxidation.