984 resultados para sediment production
Resumo:
A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.
Resumo:
A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km**2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to >0.40. Silicic acid (<2 µmol/L) limited diatoms, which contributed <10% of phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of particle flux out of an artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC/m**2/d, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol POC/m**2/d in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly <1.1 mmol POC/m**2/d, predominantly of fecal origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.
Resumo:
Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound d15N (DB-d15N), bulk sedimentary d15N, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-d15N has been questioned, and a previously reported d15N minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound d15N (FB-d15N) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-d15N in the same core over the past 25 kyr. The d15N of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-d15N is similar to DB-d15N in the Holocene but 2.2 per mil higher during the LGM. This difference suggests a greater sensitivity of FB-d15N to changes in summertime nitrate drawdown and d15N rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-d15N, FB-d15N does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-d15N minimum is due to contamination by sponge spicules. FB-d15N drops in the latter half of the Bølling/Allerød warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-d15N records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.
Resumo:
In the sediments of the NW African continental margin the mainly biogenic carbonate constituents become increasingly diluted with terrigenous material as one approaches the coast, as indicated by the carbonate-CO2 content, the Al2O3/SiO2-ratios, and the presence of ammonia fixed to alumino-silicates, predominantly to illites. In the norther area of the investigation - off Cape Blanc and Cape Bojador . the terrigenous constituents are mainly quartz from the Sahara Desert, whereas in the south - off Senegal - more alumino-silicates as clay minerals are admixed with the carbonate constituents. The organic carbon content of the continental slope sediments off Senegal is higher than in samples of the continental rise or of the preservation of organic matter as a result of high production and relatively rapid sedimentation. The zone of manganese-oxide enrichment follows the redox potential of + 330 mV from the surface (0-5 cm) into the sediments (20-30 cm deep) at 2000--3000 m and 3700 m of water depths, respectively. At shallower water depths, low redox potentials preclude deposition of manganese oxides and cause their mobilization from the sediments. About 1/3 of the total sedimentary Zn and 1/4 of the Cu is associated with the carbonate mineral fraction, probably in calcium phosphate overgrowths as a result of the mineralization of phosphorus-containing organic matter. Besides the precipitation of calcium phosphate, the mineralization of organic matter mediated by bacterial sulfate reduction also results in calcium carbonate precipitation and the exchange of ammonia for potassium on illites. Because of these simultaneous reactions, the depth distribution of all mineralization constituents in the interstitial water can be determined using the actual molar carbon-to-nitrogen-to phosphorus ratios of the sedimentary organic matter. The amount of sulfide sulfur in this process indicates the predominance of bacterial sulfate reduction in the sediments off NW Africa. This process also preferentially decomposes nitrogen- and phosphorus-containing organic compounds so organic matter deficient in these elements is characteristic for the rapidly accumulating sediments than today, indicating there was increased production of organic carbon compounds and more favorable conditions of their preservations. During the last interglacial times conditions were similar to those to today. This differentiation with time has also been observed in sediments from the Argentine Basin and from slope off South India indicating perhaps world-wide environmental changes throughout Late Quaternary times.
Resumo:
The 60 km wide shelf off Mauritania is cut by several submarine canyons. Its water-circulation is controlled by the cool Canary current and upwelling. Its Recent sediments show faunal associations remarkably related to the grain size distribution which in water depths between 40 and 80 m is strongly influenced by reworking of older coarse sand or sandstone. In this depth range a mixed biofacies originating from Pleistocene and Recent material is encountered. The present lateral faunistic and sedimentological facies change, including horizons of mixed provenance, can be recognized in vertical sequences taken by vibro-coring. This correlation combined with 14C-datations on molluscs enable the reconstruction of the history of the last glacial regression and transgression. Due to the arid climate, the emerging calcareous shelf sediments are indurated and, therefore, protected from subaerial and submarine erosion. During low sea level eolian sand migrates over the shelf, but only about 1/10 of this material remains there and is later incorporated into the sandy shelf sediments. The calculated average rate of total sedimentation during Holocene is 15 cm, and the production rate of carbonate is 5 cm/1000 years.
Resumo:
The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.
Resumo:
The biogenic-related elements Ca, Sr, Ba, P, Cd, scavenged Al, and Ti were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for Core NS93-5 from the west slope of the South China Sea. Terrestrial input as estimated from the accumulation of Ti was higher during glacials than during interglacials. Carbonate accumulation rates are inversely related to those of terrestrial input, suggesting higher production of calcareous phytoplankton during interglacials. The accumulation patterns of authigenic Sr, Ba, P, and Cd match that of carbonate, further indicating higher calcareous phytoplankton production during interglacials. Scavenged Al and excess SiO2, which is related to biogenic opal, exhibit higher accumulation rates during glacials and correspond with changes in terrestrial input. This indicates that terrestrial input driven is important to siliceous phytoplankton production but not for calcareous phytoplankton production. As calcareous phytoplankton is the dominant component of the biogenic sediments in the South China Sea, particularly during interglacials, previous inference of higher productivity in the South China Sea during glacials based on only the biogenic opal proxy needs to be reconsidered.
Resumo:
An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.
Resumo:
To obtain insight into the natural and/or human-induced changes in the trophic state of the distal portion of the Po River discharge plume over the last two centuries, high temporal resolution dinoflagellate cyst records were established at three sites. Cyst production rates appear to reflect the natural variability in the river's discharge, whereas cyst associations reflect the trophic state of the upper waters, which in turn can be related to agricultural development. The increased abundances of Lingulodinium machaerophorum and Stelladinium stellatum found as early as 1890 and 1920 correspond to the beginning of the industrial revolution in Italy and the first chemical production and dispersion of ammonia throughout Europe. After 1955, the increased abundances of these species and of Polykrikos schwartzii, Brigantedinium spp. and Pentapharsodinium dalei correspond to agriculturally induced alterations of the hypertrophic conditions. A slight improvement in water quality can be observed from 1987 onward.
Resumo:
We combined the analysis of sediment trap data and satellite-derived sea surface chlorophyll to quantify the amount of organic carbon export to the deep sea in the upwelling induced high production area off northwest Africa. In contrast to the generally global or basin-wide adoption of export models, we used a regionally fitted empirical model. Furthermore, the application of our model was restricted to a dynamically defined region of high chlorophyll concentration in order to restrict the model application to an environment of more homogeneous export processes. We developed a correlation-based approximation to estimate the surface source area for a sediment trap deployed from 11 June 1998 to 7 November 1999 at 21.25°N latitude and 20.64°W longitude off Cape Blanc. We also developed a regression model of chlorophyll and export of organic carbon to the 1000 m depth level. Carbon export was calculated for an area of high chlorophyll concentration (>1 mg/m**3) adjacent to the coast on a daily basis. The resulting zone of high chlorophyll concentration was 20,000-800,000 km**2 large and yielded a yearly export of 1.123 to 2.620 Tg organic carbon. The average organic carbon export within the area of high chlorophyll concentration was 20.6 mg/m**2d comparable to 13.3 mg/m**2d as found in the sediment trap results if normalized to the 1000 m level. We found strong interannual variability in export. The period autumn 1998 to summer 1999 was exceeding the mean of the other three comparable periods by a factor of 2.25. We believe that this approach of using more regionally fitted models can be successfully transferred even to different oceanographic regions by selecting appropriate definition criteria like chlorophyll concentration for the definition of an area to which it is applicable.