846 resultados para secure routing protocols
Resumo:
TeliaSoneran SME-viestintäjärjestelmän tarkoituksena on toimia demo- ja kehitysalustana uusille viestintäpalveluille. Näitä palveluita ovat esimerkiksi tilatiedon seuraaminen ja muuttaminen sekä pikaviestien lähettäminen ja vastaanottaminen eri alustoilla, kuten matkapuhelimilla, PDA-laitteilla, PC:eillä. Järjestelmän tulee myös toimia helppona yhteysrajapintana mahdollisille tuleville tiedonsiirtoteille. Pikaviestien lähetys- ja puhelujensignalointiprotokollana järjestelmässä toimii SIP. Järjestelmän sisäisenä kommunikaatioprotokollana toimii CORBA. Työn osuus ja tämän dokumentin fokus ovat järjestelmäytimessä eli Core:ssa. Core:n avulla järjestelmän eri komponentit, kuten SIP-, WAP- ja WWW-viestinvälityspalvelimet sidotaan toisiinsa sekä tietokantaan. Ytimen tehtäviin kuuluu myös käyttäjien tilatietojen ylläpito, viestien reititys eri päätelaitteisiin, ryhmäviestintä sekä pikaviestikomentojen toiminnallisuus, eli sanalla sanoen älykkyys. Lisäksi työssä tarkastellaan ytimen käyttämiä rajapintoja ja niiden toteutustekniikoita, projektin toteutukseen käytettyjä työkaluja sekä järjestelmän tarjoamia palveluita yksityiskohtaisemmin ytimen kannalta. Lopuksi luodaan silmäys tulevaisuuden näkymiin ja järjestelmän nykytilaan sekä kokonaisuutena hyvin menneen projektin tavoitteisiin.
Resumo:
Imaging in neuroscience, clinical research and pharmaceutical trials often employs the 3D magnetisation-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images with high spatial resolution of the human brain. Typical research and clinical routine MPRAGE protocols with ~1mm isotropic resolution require data acquisition time in the range of 5-10min and often use only moderate two-fold acceleration factor for parallel imaging. Recent advances in MRI hardware and acquisition methodology promise improved leverage of the MR signal and more benign artefact properties in particular when employing increased acceleration factors in clinical routine and research. In this study, we examined four variants of a four-fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and segmented MPRAGE) and compared clinical readings, basic image quality metrics (SNR, CNR), and automated brain tissue segmentation for morphological assessments of brain structures. The results were benchmarked against a widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that served as reference in this study. 22 healthy subjects (age=20-44yrs.) were imaged with all MPRAGE variants in a single session. An experienced reader rated all images of clinically useful image quality. CAIPIRINHA MPRAGE scans were perceived on average to be of identical value for reading as the reference ADNI-2 protocol. SNR and CNR measurements exhibited the theoretically expected performance at the four-fold acceleration. The results of this study demonstrate that the four-fold accelerated protocols introduce systematic biases in the segmentation results of some brain structures compared to the reference ADNI-2 protocol. Furthermore, results suggest that the increased noise levels in the accelerated protocols play an important role in introducing these biases, at least under the present study conditions.
Resumo:
OBJECTIVES: To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING: We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS: Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION: Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.
Resumo:
AbstractObjective:To assess the reduction of estimated radiation dose in abdominal computed tomography following the implementation of new scan protocols on the basis of clinical suspicion and of adjusted images acquisition parameters.Materials and Methods:Retrospective and prospective review of reports on radiation dose from abdominal CT scans performed three months before (group A – 551 studies) and three months after (group B – 788 studies) implementation of new scan protocols proposed as a function of clinical indications. Also, the images acquisition parameters were adjusted to reduce the radiation dose at each scan phase. The groups were compared for mean number of acquisition phases, mean CTDIvol per phase, mean DLP per phase, and mean DLP per scan.Results:A significant reduction was observed for group B as regards all the analyzed aspects, as follows: 33.9%, 25.0%, 27.0% and 52.5%, respectively for number of acquisition phases, CTDIvol per phase, DLP per phase and DLP per scan (p < 0.001).Conclusion:The rational use of abdominal computed tomography scan phases based on the clinical suspicion in conjunction with the adjusted images acquisition parameters allows for a 50% reduction in the radiation dose from abdominal computed tomography scans.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Aquesta memòria descriu la preparació, l'execució i els resultats obtinguts d'implementar un sistema calculador de rutes. El projecte Open Source Routing Machine és un motor calculador de rutes d'alt rendiment que utilitza les dades de OpenStreetMaps per calcular el camí més curt entre dos punts. En aquest projecte final no únicament es volen utilitzar les dades OpenStreetMap sinó que també es pretenen utilitzar dades pròpies en format shapefile i poder visualitzar-los en un visor web. Aquest visor permet a l'usuari, de forma senzilla, sol•licitar rutes al servidor OSRM creat, obtenint la ruta desitjada en molt pocs milisegons
Resumo:
Optical transport networks (OTN) must be prepared in terms of better resource utilization, for accommodating unicast and multicast traffic together. Light-trees have been proposed for supporting multicast connections in OTN. Nevertheless when traffic grooming is applied in light-trees, resources can be underutilized as traffic can be routed to undesirable destinations in order to avoid optical-electrical-optical (OEO) conversions. In this paper, a novel architecture named S/G light- tree for supporting unicast/multicast connections is proposed. The architecture allows traffic dropping and aggregation in different wavelengths without performing OEO conversions. A heuristic that routes traffic demands using less wavelengths by taking advantage of the proposed architecture is designed as well. Simulation results show that the architecture can minimize the number of used wavelengths and OEO conversions when compared to light-trees
Resumo:
Peer-reviewed
Resumo:
An efficient approach for organizing large ad hoc networks is to divide the nodesinto multiple clusters and designate, for each cluster, a clusterhead which is responsible forholding intercluster control information. The role of a clusterhead entails rights and duties.On the one hand, it has a dominant position in front of the others because it manages theconnectivity and has access to other node¿s sensitive information. But on the other hand, theclusterhead role also has some associated costs. Hence, in order to prevent malicious nodesfrom taking control of the group in a fraudulent way and avoid selfish attacks from suitablenodes, the clusterhead needs to be elected in a secure way. In this paper we present a novelsolution that guarantees the clusterhead is elected in a cheat-proof manner.
Resumo:
Cognitive radio networks sense spectrum occupancy and manage themselvesto operate in unused bands without disturbing licensed users. The detection capability of aradio system can be enhanced if the sensing process is performed jointly by a group of nodesso that the effects of wireless fading and shadowing can be minimized. However, taking acollaborative approach poses new security threats to the system as nodes can report falsesensing data to reach a wrong decision. This paper makes a review of secure cooperativespectrum sensing in cognitive radio networks. The main objective of these protocols is toprovide an accurate resolution about the availability of some spectrum channels, ensuring thecontribution from incapable users as well as malicious ones is discarded. Issues, advantagesand disadvantages of such protocols are investigated and summarized.
Resumo:
Peer-reviewed
Resumo:
As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.
Resumo:
The growing spread of small but powerful mobile devices (such as PDAs, mobile phone, Internet Tablet, etc.) opens up new scenarios in which users can interact with such devices in many environments in order to access the information at different locations. In this thesis, a ubiquitous computing based system called Secure Bluetooth Audio Transmission System is introduced. This system is situated in a large public place (like airport, festival venues, etc.), where voice messages are conveyed from the system to users' Bluetooth headsets in order to inform users the latest flight schedule and other public information. The reliability of the message is secured by adopting an authorization strategy and ECDSA. In order to assess and evaluate the risks and potential weaknesses of the system, an easy-to-use prototype implementation was written and tested. Other possible uses and further research were also considered.