992 resultados para secondary metabolism anthocyanin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0 produces a variety of secondary metabolites, in particular the antibiotics pyoluteorin and 2,4-diacetylphloroglucinol, and protects various plants from diseases caused by soilborne pathogenic fungi. The rpoD gene encoding the housekeeping sigma factor sigma 70 of P. fluorescens was sequenced. The deduced RpoD protein showed 83% identity with RpoD of Pseudomonas aeruginosa and 67% identity with RpoD of Escherichia coli. Attempts to inactivate the single chromosomal rpoD gene of strain CHA0 were unsuccessful, indicating an essential role of this gene. When rpoD was carried by an IncP vector in strain CHA0, the production of both antibiotics was increased severalfold and, in parallel, protection of cucumber against disease caused by Pythium ultimum was improved, in comparison with strain CHA0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Optic perineuritis (OPN) is an inflammatory condition involving the optic nerve sheath because of a variety of causes. We describe three patients in whom OPN was secondary to Wegener's granulomatosis (WG) and compare the clinical findings in these cases with those of idiopathic OPN. METHODS: This is a retrospective small case series derived from patients with OPN seen in an outpatient neuro-ophthalmology clinic. Medical records and imaging studies of these patients were reviewed. RESULTS: These patients shared clinical similarities with idiopathic OPN including age, sex, symptoms, radiographic findings and steroid responsiveness. However, recurrence of symptoms on lowering the prednisone dose below 40 mg distinguished these patients from those with idiopathic OPN. CONCLUSIONS: Steroid dependency in idiopathic OPN should raise suspicion of WG. Patients with OPN should be specifically questioned regarding pre-existing upper respiratory tract disorders and rheumatic symptoms and laboratory testing should include acute phase reactants, anti-neutrophil cytoplasmic antibodies and tests of renal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired glucose tolerance or diabetes mellitus are frequent complications after organ transplantation, and are usually attributed to glucocorticoid and immunosuppressive treatments. Liver transplantation results in total hepatic denervation which may also affect glucoregulation. We therefore evaluated postprandial glucose metabolism in a group of patients with liver cirrhosis before and after orthotopic liver transplantation. Seven patients with liver cirrhosis of various etiologies, 6 patients having received a kidney transplant, and 6 healthy subjects were studied. Their glucose metabolism was evaluated in the basal state and over 4 hours after ingestion of a glucose load with 6.6 (2) H glucose dilution analysis. The patients with liver cirrhosis were studied before, and again 4 weeks (range 2-6) and 38 weeks (range 20-76, n=6) after orthotopic liver transplantation. Basal glucose metabolism was similar in liver and kidney transplant recipients. Impaired glucose tolerance was present in both groups, but postprandial hyperglycemia was exaggerated and lasted longer in liver transplant patients. Postprandial insulinemia was lower in liver transplant recipients, while C-peptide concentrations were comparable to those of kidney transplant recipients, indicating increased insulin clearance. Glucose turnover was not altered in both groups of patients during the initial 3 hours after glucose ingestion, but was higher in liver transplant early after transplantation during the fourth hour. Postprandial hyperglycemia remained unchanged in liver transplant recipients 38 weeks after liver transplantation, despite substantial reduction of immunosuppressive and glucocorticoid doses. We conclude that liver transplant recipients have severe postprandial hyperglycemia which can be attributed to insulinopenia (secondary, at least in part, to increased insulin clearance) and a late increased glucose turnover. These changes may be secondary to hepatic denervation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation aims at fostering the professional development of the EFL teacher. This document compiles two small scale empirical studies carried out during the practicum periods of the TED's course. The first one is based on the role of the teacher's talk in the EFL classroom and the second one focuses on students’ small group talk, analysing the impact of cooperative learning in the EFL classroom by examining students' conversation. The following section gathers the teacher's personal reflections upon the process of professionalization. The paper concludes with a summary of the major findings and further professional improvement proposals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990-2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of waste management is causing growing concern due to increasing generation rates, the emissions into soil, water and air, the social conflicts derived from the election of disposal sites and the loss of resources and energy among others. In this work, an innovative methodology is used to enable a better understanding of the waste generation and management system in Italy. Two new waste indicators are built to complement the conventional indicators used by official statistics. Then a multi-scale analysis of the Density of Waste Disposed (DWD) is carried out to highlight the territorial diversity of waste performances and test its contribution to detect plausible risky areas. Starting from Italian regions, the scale down goes on to the provincial level and, only for the region of Campania, the municipal one. First, the analysis shows that the DWD is able to complement the information provided by the conventional waste indicators. Second, the analysis shows the limitations of using a unique institutional solution to waste management problems. In this sense the multi-scale analysis provides with a more realistic picture of Italian waste system than using a single scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole body protein metabolism and resting energy expenditure (REE) were measured at 11, 23, and 33 wk of pregnancy in nine pregnant (not malnourished) Gambian women and in eight matched nonpregnant nonlactating (NPNL) matched controls. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotope enrichment of urinary urea and ammonia during a period of 9 h after a single oral dose of [15N]glycine. At regular intervals, REE was measured by indirect calorimetry (hood system). Based on the arithmetic end-product average of values obtained with urea and ammonia, a significant increase in whole body protein synthesis was observed during the second trimester (5.8 +/- 0.4 g.kg-1.day-1) relative to values obtained both for the NPNL controls (4.5 +/- 0.3 g.kg-1.day-1) and those during the first trimester (4.7 +/- 0.3 g.kg-1.day-1). There was a significant rise in REE during the third trimester both in the preprandial and postprandial states. No correlation was found between REE after meal ingestion and the rate of whole body protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.