986 resultados para renin angiotensin system
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.
Resumo:
The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.
Resumo:
We investigated the short-term and sustained hormonal and renal effects of angiotensin II (Ang II) receptor blockade in normotensive healthy volunteers. Twenty-four subjects maintained on a fixed sodium diet were randomized to receive for 8 days a placebo or 10 or 50 mg doses of the Ang II antagonist irbesartan (SR 47436, BMS 186295) according to a double-blind, parallel group design. Plasma renin activity, plasma immunoreactive Ang II and aldosterone levels, blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 8 hours after the first and eighth administration of each dose of irbesartan or placebo. Ang II receptor blockade with irbesartan induced a dose-dependent compensatory increase in plasma renin activity and plasma angiotensin levels and a significant decrease in plasma aldosterone levels. The compensatory rise in plasma renin activity and Ang II levels was more pronounced on day 8, reflecting a long duration of the blocking effect of irbesartan. Irbesartan induced small changes in blood pressure and did not significantly modify renal blood flow and glomerular filtration rate. However, a significant decrease in filtration fraction was observed during receptor blockade on days 1 and 8. The tubular effects of irbesartan were characterized by a dose-dependent increase in sodium and chloride excretions. Interestingly, the cumulative natriuretic response to Ang II receptor blockade was similar on days 1 and 8, suggesting that in these subjects, renal Ang II receptors are not blocked over 24 hours during repeated administration even though this antagonist has a long duration of action (t1/2 of 15 to 17 hours).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
Neuropeptide Y (NPY) is a key modulator of the autonomic nervous system playing pivotal roles in cardiovascular and neuronal functions. In this study, we assessed the cellular localization and gene expression of NPY in rat kidneys. We also examined the relationship between NPY gene expression and renin in two rat models of hypertension (two-kidney, one-clip renal hypertension (2K1C), and deoxycorticosterone-salt-induced hypertension (DOCA-salt)) characterized by a similar blood pressure elevation. In situ hybridization and immunohistochemistry, using anti-NPY or anti-C-flanking peptide of NPY (CPON) antibodies, showed that NPY transcript and protein were colocalized in the tubules of rat kidneys. During experimental hypertension, NPY mRNA was decreased in both kidneys of the 2K1C animals, but not in the kidney of DOCA-salt rats. In 2K1C rats, renal NPY content was also decreased. The difference in NPY gene expression between 2K1C rats (a high renin model of hypertension) and DOCA-salt rats (a low renin model of hypertension) suggests that circulating angiotensin II plays a role in local renal NPY gene expression and that the elevated blood pressure per se is not the primary factor responsible for the control of NPY gene expression in the kidney.
Resumo:
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND: MDL 100,240 (pyrido[2,1-a] [2]benzazepine-4-carboxylic acid,7-[[2-(acetylthio)-1-oxo-3-phenylpropyl]amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo, [4S-[4alpha,7alpha(R(*)),12bbeta]]-) is a molecule possessing an inhibiting ability on both angiotensin converting enzyme (ACE) and neutral endopeptidase, the enzyme responsible for atrial natriuretic peptide (ANP) degradation. Such a dual mechanism of action presents a potential clinical interest for the treatment of hypertension and congestive heart failure. OBJECTIVES: To evaluate the bioavailability of MDL 100,240 and its accumulation over repeated oral administration, using ACE inhibition as a surrogate for plasma drug level and determining its profile after oral and i.v. administration. METHODS: First, in an open, one-period, single-dose study, the ACE inhibition profile was characterised following a 12.5 mg MDL 100,240 i.v. infusion. Second, in a three-group, parallel, randomised, double-blind study, each group of four subjects received q.d., over 8 days, 2.5, 10 or 20 mg of MDL 100,240 orally. The ACE inhibition profile was determined on day 1 and day 8. Trough plasma ACE was measured on days 2, 3 and 4. The recovery of ACE activity was monitored up to 72 h after the last dose of MDL 100,240. RESULTS: ACE inhibition profile was similar on day 1 and day 8, and trough inhibition remained unchanged after the 8 days of treatment with 10 mg or 20 mg. Following repeated 2.5-mg ingestion, trough inhibition increased from 33% to 44% after the eighth dose. The oral bioavailability of MDL 100,240 was estimated at 85%, not statistically different from 100%. The accumulation ratio at steady state was estimated at 112%. Expressing the accumulation ratio in terms of half-life, a t(1/2) of 0.31 days or 7. 5 h was estimated. CONCLUSION: MDL 100,240 (oral solution) has a good bioavailability, as estimated by ACE inhibition, and no drug accumulation seems to occur over 8 days with the 10-mg and 20-mg doses, but a slight rise in the trough level is observed with the 2. 5-mg dose.
Resumo:
BACKGROUND: The renal enzyme renin cleaves from the hepatic alpha(2)-globulin angiotensinogen angiotensin-(1-10) decapeptide [Ang-(1-10)], which is further metabolized to smaller peptides that help maintain cardiovascular homeostasis. The Ang-(1-7) heptapeptide has been reported to have several physiological effects, including natriuresis, diuresis, vasodilation, and release of vasopressin and prostaglandins. METHODS: To investigate Ang-(1-7) in clinical settings, we developed a method to measure immunoreactive (ir-) Ang-(1-7) in 2 mL of human blood and to estimate plasma concentrations by correcting for the hematocrit. A sensitive and specific antiserum against Ang-(1-7) was raised in a rabbit. Human blood was collected in the presence of an inhibitor mixture including a renin inhibitor to prevent peptide generation in vitro. Ang-(1-7) was extracted into ethanol and purified on phenylsilylsilica. The peptide was quantified by radioimmunoassay. Increasing doses of Ang-(1-7) were infused into volunteers, and plasma concentrations of the peptide were measured. RESULTS: The detection limit for plasma ir-Ang-(1-7) was 1 pmol/L. CVs for high and low blood concentrations were 4% and 20%, respectively, and between-assay CVs were 8% and 13%, respectively. Reference values for human plasma concentrations of ir-Ang-(1-7) were 1.0-9.5 pmol/L (median, 4.7 pmol/L) and increased linearly during infusion of increasing doses of Ang-(1-7). CONCLUSIONS: Reliable measurement of plasma ir-Ang-(1-7) is achieved with efficient inhibition of enzymes that generate or metabolize Ang-(1-7) after blood sampling, extraction in ethanol, and purification on phenylsilylsilica, and by use of a specific antiserum.
Resumo:
A score system integrating the evolution of efficacy and tolerability over time was applied to a subpopulation of the STRATHE trial, a trial performed according to a parallel group design, with a double-blind, random allocation to either a fixed-dose combination strategy (perindopril/indapamide 2 mg/0.625 mg, with the possibility to increase the dose to 3 mg/0.935 mg, and 4 mg/1.250 mg if needed, n = 118), a sequential monotherapy approach (atenolol 50 mg, followed by losartan 50 mg and amlodipine 5 mg if needed, n = 108), or a stepped-care strategy (valsartan 40 mg, followed by valsartan 80 mg and valsartan 80 mg+ hydrochlorothiazide 12.5 mg if needed, n = 103). The aim was to lower blood pressure below 140/90 mmHg within a 9-month period. The treatment could be adjusted after 3 and 6 months. Only patients in whom the study protocol was strictly applied were included in this analysis. At completion of the trial the total score averaged 13.1 +/- 70.5 (mean +/- SD) using the fixed-dose combination strategy, compared with -7.2 +/- 81.0 using the sequential monotherapy approach and -17.5 +/- 76.4 using the stepped-care strategy. In conclusion, the use of a score system allows the comparison of antihypertensive therapeutic strategies, taking into account at the same time efficacy and tolerability. In the STRATHE trial the best results were observed with the fixed-dose combination containing low doses of an angiotensin enzyme converting inhibitor (perindopril) and a diuretic (indapamide).
Resumo:
Several studies have demonstrated that mice are polymorphic for the number of renin genes, with some inbred strains harboring one gene (Ren-1(c)) and other strains containing two genes (Ren-1(d) and Ren-2). In this study, the effects of 1% salt and deoxycorticosterone acetate (DOCA)/salt were investigated in one- and two-renin gene mice, for elucidation of the role of renin in the modulation of BP, cardiac, and renal responses to salt and DOCA. The results demonstrated that, under baseline conditions, mice with two renin genes exhibited 10-fold higher plasma renin activity, 100-fold higher plasma renin concentrations, elevated BP (which was angiotensin II-dependent), and an increased cardiac weight index, compared with one-renin gene mice (all P < 0.01). The presence of two renin genes markedly increased the BP, cardiac, and renal responses to salt. The number of renin genes also modulated the responses to DOCA/salt. In one-renin gene mice, DOCA/salt induced significant renal and cardiac hypertrophy (P < 0.01) even in the absence of any increase in BP. Treatment with losartan, an angiotensin II AT(1) receptor antagonist, decreased BP in two-renin gene mice but not in one-renin gene mice. However, losartan prevented the development of cardiac hypertrophy in both groups of mice. In conclusion, these data demonstrate that renin genes are important determinants of BP and of the responses to salt and DOCA in mice. The results confirm that the Ren-2 gene, which controls renin production mainly in the submaxillary gland, is physiologically active in mice and is not subject to the usual negative feedback control. Finally, these data provide further evidence that mineralocorticoids promote cardiac hypertrophy even in the absence of BP changes. This hypertrophic process is mediated in part by the activation of angiotensin II AT(1) receptors.
Resumo:
Neuropeptide Y (NPY) is a peptide with vasoconstrictor properties known to be present in the central nervous system as well as in sympathetic nerve endings and the adrenal medulla. The purposes of this study were to investigate in normotensive conscious rats the effects of nonpressor doses of NPY on cardiac output and regional blood flow distribution (using radiolabeled microspheres) as well as on plasma renin activity, plasma catecholamine and vasopressin levels. NPY (0.1 microgram/min) infused i.v. for 30 min modified neither blood pressure nor heart rate. Cardiac index was at comparable levels in NPY- as in vehicle-treated rats (17.7 +/- 1.6, n = 8, vs. 21.3 +/- 0.9 ml/min/100 g, n = 8, mean +/- S.E.M.). There was no significant difference in regional blood flow distribution between the two groups of rats, except for the large intestine (0.42 +/- 0.06 vs. 0.71 +/- 0.1 ml/min/g in NPY- and vehicle-treated rats, respectively, P less than .05). Basal plasma renin activity and catecholamine levels were not modified by NPY whereas plasma vasopressin levels were lower (P less than .05) in rats given NPY (0.76 +/- 0.3 pg/ml, n = 8) than in those having received the vehicle (2.2 +/- 0.4 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We investigated the tolerability and angiotensin II antagonist activity of oral DuP 532 in healthy male subjects. DuP 532 (1 to 200 mg) was well tolerated, with no effect on blood pressure or heart rate. Compared with losartan (100 mg), DuP 532 (200 mg) was a weak antagonist of pressor responses to intravenous angiotensin II. Maximum inhibition of diastolic pressor response was 86% (95% confidence interval [CI], 84%, 88%) approximately 4.6 hours after losartan and 48% (95% CI, 38%, 56%) 8.7 hours after DuP 532. Twenty-four hours after dosing, inhibition by losartan and DuP 532 was similar (40% to 45%). DUP 532 is extensively bound in human plasma, with an in vitro free fraction of 0.06. Although DuP 532 and EXP3174 (losartan's active metabolite) have similar AT1-receptor potency, and plasma concentrations of DuP 532 were much greater than losartan/EXP3174, the level of antagonism was much less for DuP 532. These results indicate that multiple factors determine the in vivo potency of angiotensin II antagonists, including affinity for and distribution to the receptor as modulated by plasma binding.
Resumo:
The aim of this study was to investigate the relationships between plasma concentrations of losartan, an orally active angiotensin II inhibitor, its active metabolite EXP3174, and angiotensin II blockade. Six healthy subjects received single oral doses of 40, 80, or 120 mg losartan and placebo at 1-week intervals in a crossover study. Angiotensin II blockade was assessed by the blood pressure response to exogenous angiotensin II before and after losartan administration. EXP3174 reached higher plasma concentrations and was eliminated more slowly than its parent compound; its levels paralleled the profile of angiotensin II blockade closer than losartan. Inhibition of the pressure response was dose dependent. The Hill-shaped relationship between response and EXP3174 concentration (or time-integrated variables) approached a plateau with 80 mg. The dose-dependent increase in plasma renin and angiotensin II exhibited a considerable individual scatter. We conclude that losartan produces a dose-dependent, effective angiotensin II blockade that is largely determined by the active metabolite EXP3174.
Resumo:
In nine normal volunteers, a series of five venous blood samples was obtained before and up to 24 h after converting enzyme inhibition by a single oral dose of enalapril or lisinopril. Plasma renin activity and blood angiotensin I were measured. A close linear relationship was found between the increase in plasma renin activity and the increase in blood angiotensin I. The linear correlation between plasma renin activity and blood angiotensin I remained after converting enzyme inhibition. Thus, the rise in angiotensin I after inhibition of the conversion of angiotensin I to angiotensin II is due to an enhanced release of renin rather than to accumulation of angiotensin I.
Resumo:
Captopril (SQ 14 225), an orally active inhibitor of angiotensin-converting enzyme, was given to 7 hypertensive patients with chronic renal failure whose plasma-creatinine ranged from 1.5--7.4 mg/dl; whose plasma-renin activity was normal; whose hypertension was not controlled by previous therapy consisting in 5 patients of three or more antihypertensive drugs; and whose blood-pressures averaged 176/111 +/- 11/3 mm Hg. Inhibition of converting enzyme by oral captopril, 200 mg twice daily, reduced blood-pressure to 156/100 +/- 9/5 mm Hg. 5 patients needed additional treatment by frusemide 40--250 mg/day orally. With this combined regimen the blood-pressure of all patients averaged 126/85 +/- 4/3 mm Hg after 8 +/- 2 weeks of captopril. The drug was well tolerated. These results suggest that inhibition of angiotensin-converting enzyme with or without sodium depletion is an efficient treatment for hypertension associated with chronic renal failure. It appears that although renin levels in patients with this condition may be "normal", they are inappropriate in relation to the subtle degree of sodium retention that occurs with this disorder.