928 resultados para rare earth element


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research funded by the Army Research Laboratory (ARL), the Metallurgical and Materials Engineering Department at Montana Tech investigated various methods of extracting and refining rare earth elements (REEs) from mineral ores and concentrates. Extensive thermodynamic, thermogravimetric and differential thermal analyses were performed to evaluate the relative stabilities of various REE compounds in order to assess potential methods for selective separation and recovery of specific REEs. Conversion of rare earth oxides (REO) to rare earth chlorides or bromides is a possible initial step in pyrometallurgical and hydrometallurgical processing of REEs. REO can be converted to chlorides or bromides by roasting in the presence of a chloridizing or bromidizing reactant. (e.g. NH4Cl and NH4Br).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smectite formation in alkaline-saline environments has been attributed to direct precipitation from solution and/or transformation from precursor minerals, but these mechanisms are not universally agreed upon in the literature. The objective of this work was to investigate the mineralogy of smectites in the soils surrounding a representative alkaline-saline lake of Nhecolandia, a sub-region of the Pantanal wetland, Brazil, and then to identify the mechanisms of their formation. Soils were sampled along a toposequence and analyzed by X-ray diffraction, transmission electron microscopy-energy dispersive X-ray analysis, and inductively coupled plasma-mass spectrometry. Water was collected along a transect involving the studied toposequence and equilibrium diagrams were calculated using the databases PHREEQC and AQUA. The fine-clay fraction is dominated by smectite, mica, and kaolinite. Smectites are concentrated at two places in the toposequence: an upper zone, which includes the soil horizons rarely reached by the lake-level variation; and a lower zone, which includes the surface horizon within the area of seasonal lake-level variation. Within the upper zone, the smectite is dioctahedral, rich in Al and Fe, and is classified as ferribeidellite. This phase is interstratified with mica and vermiculite and has an Fe content similar to that of the mica identified. These characteristics suggest that the ferribeidellite originates from transformation of micas and that vermiculite is an intermediate phase in this transformation. Within the lower zone, smectites are dominantly trioctahedral, Mg-rich, and are saponitic and stevensitic minerals. In addition, samples enriched in these minerals have much smaller rare-earth element (REE) contents than other soil samples. The water chemistry shows a geochemical control of Mg and saturation with respect to Mg-smectites in the more saline waters. The REE contents, water chemistry, and the presence of Mg-smectite where maximum evaporation is expected, suggest that saponitic and stevensitic minerals originate by chemical precipitation from the water column of the alkaline-saline lake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Upper Devonian to Lower Carboniferous volcanosedimentary rocks of the Yarrol terrane of the northern New England Fold Belt have previously been ascribed to a forearc basin setting. New data presented here, however, suggest that the Yarrol terrane developed as a backarc basin during the Middle to early Late Devonian. Based on field studies, we recognise four regionally applicable strati graphic units: (i) a basal, ?Middle to Upper Devonian submarine mafic volcanic suite (Monal volcanic facies association); (ii) the lower Frasnian Lochenbar beds that locally unconformably overlie the Monal volcanic facies association: (iii) the Three Moon Conglomerate (Upper Devonian - Lower Carboniferous): and (iv) the Lower Carboniferous Rockhampton Group characterised by the presence of oolitic limestone. Stratigraphic and compositional differences suggest the Monal volcanic facies association post-dates Middle Devonian silicic-dominated magmatism that was coeval with gold-copper mineralisation at Mt Morgan. The Lochenbar beds, Three Moon Conglomerate and Rockhampton Group represent a near-continuous sedimentary record of volcanism that changed in composition and style from mafic effusive (Late Devonian) to silicic explosive volcanism (Early Carboniferous). Palaeocurrent data from the Three Moon Conglomerate and Rockhampton Group indicate dispersal of sediment to the west and northwest, and are inconsistent with derivation from a volcanic-are source situated to the west (Connors-Auburn Arch). Geochemical data show that the Monal volcanic facies association ranges from tholeiitic subalkaline basalts to calc-alkaline basaltic andesite. Trace and rare-earth element abundances are distinctly MORE-like (e.g, light rare earth element depletion), with only moderate enrichment of the large-ion lithophile elements in some units, and negative Nb anomalies, suggesting a subduction-related signature. Basalts of the Monal volcanic facies association are best described as transitional between calc-alkali basalts and N-MORB. The elevated high field strength element contents (e.g. Zr, Y, Ti) are higher than modern island-are basalts, but comparable to basalts that floor modern backarc basins. This geochemical study, coupled with stratigraphic relationships, suggest that the eruption of backarc basin basalts followed widespread Middle Devonian, extension-related silicic magmatism (e.g. Retreat Batholith, Mt Morgan), and floored the Yarrol terrane. The Monal volcanic facies association thus shows similarities in its tectonic environment to the Lower Permian successions (e.g. Rookwood Volcanics) of the northern New England Fold Belt. These mafic volcanic sequences are interpreted to record two backarc basin-forming periods (Middle - Late Devonian and Late Carboniferous - Early Permian) during the Late Palaeozoic history of the New England Orogen. Silicic-dominated explosive volcanism, occurring extensively across the northern New England Fold Belt in the Early Carboniferous (Varrol terrane, Campwyn Volcanics, Drummond and Burdekin Basins), reflects another period of crustal melting and extension, most likely related to the opening of the Drummond Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossils of wood, bone and teeth found along the Upper Purus River οf Amazonia. were studied using conventional microscopy and scanning electron microscopy. Mass spectometry was also used to investigate minor and trace element signatures of bone samples.The microsopy studies showed that there was little alteration of original textures. In the fossil wood samples, identified In thin section as tropical hardwood trees, the replacement of the original material with siderite suggests that fossilization occured in shallow sediments in which interstitial waters were saturated with respect to iron carbenate. In samples of both fossilized bone and wood, precipitation of secondary iron phases was commonly observed in cracks and voids. Other secondary phases Included silica, iron oxides, manganese carbonate. The intimate assοciation οf these secondary phases with the original biological structures could be evidence for a microbiological role in the formation of these phases. The similarity in rare earth element (REE) signatures for 2 fossil bone samples from different modern locations indicates their having shared similar diagenetic histories.The virtually complete preservation of original textures suggests that microscοpic studies could be useful in classifying fossil and even in identifying original materials. Rare carth signatures in fossilized bone may reflect ground water compositions at the time of fossilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Moliere have extremely low delta O-18 values (10.3% and 11.3%) and low Sr-87/Sr-86 ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1%,22.4%o and 0.708421-0.708630). The rare earth element (REE) abundances and patterns from La Moliere not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the ``exotic'' teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two ``exotic'' teeth were formed while the sharks frequented a freshwater environment with very low O-18-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (similar to 2300 m) Miocene Alps adjacent to a marginal sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mississippi Valley-type zinc and lead deposits at Topla (250,150 metric tons (t) of ore grading 1.0 wt % Zn and 3.3 wt % Pb) and Mezica (19 million metric tons (Mt) of ore grading 5.3 wt % Pb and 2.7 wt % Zn) occur within the Middle to Upper Triassic platform carbonate rocks of the northern Karavanke/Drau Range geotectonic units of the Eastern Alps, Slovenia. The ore and host rocks of these deposits have been investigated by a combination of inorganic and organic geochemical methods to determine major, trace, and rare earth element (REE) concentrations, hydrocarbon distribution, and stable isotope ratios of carbonates, kerogen, extractable organic matter, and individual hydrocarbons. These data combined with sedimentological evidence provide insight into the paleoenvironmental conditions at the site of ore formation. The carbonate isotope composition, the REE patterns, and the distribution of hydrocarbon biomarkers (normal alkanes and steranes) suggest a marine depositional environment. At Topla, a relatively high concentration of redox sensitive trace elements (V, Mo, U) in the host dolostones and REE patterns parallel to that of the North American shale composite suggest that sediments were deposited in a reducing environment. Anoxic conditions enhanced the preservation of organic matter and resulted in relatively higher total organic carbon contents (up to 0.4 wt %). The isotopic composition of the kerogen (delta C-13(kerogon) = -29.4 to -25.0 parts per thousand, delta N-15(kerogen) = -.13.6 to 6.8 parts per thousand) suggests that marine algae and/or bacteria were the main source of organic carbon with a very minor contribution from detrital continental plants and a varying degree of alteration. Extractable organic matter from Topla ore is generally depleted in C-13 compared to the associated kerogen, which is consistent with an indigenous source of the bitumens. The mineralization correlates with delta N-15(kerogen) values around 0 per mil, C-13 depleted kerogen, C-13 enriched n-heptadecane, and relatively high concentrations of bacteria] hydrocarbon biomarkers, indicating a high cyanobacterial biomass at the site of ore formation. Abundant dissimilatory sulfate-reducing bacteria, feeding on the cyanobacterial remains, led to accumulation of biogenic H2S in the pore water of the sediments. This biogenic H2S was mainly incorporated into sedimentary organic matter and diagenetic pyrite. Higher bacterial activity at the ore site also is indicated by specific concentration ratios of hydrocarbons, which are roughly correlated with total Pb plus Zn contents. This correlation is consistent with mixing of hydrothermal metal-rich, fluids and local bacteriogenic sulfide sulfur. The new geochemical data provide supporting evidence that Topla is a low-temperature Mississippi Valley-type deposit formed in an anoxic supratidal saline to hypersaline environment. A laminated cyanobacterial mat, with abundant sulfate-reducing bacteria was the main site of sulfate reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous ( approximate to 123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high epsilonNd(i) and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galapagos HIMU component; their epsilonNd(i) are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower epsilonNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower epsilonNd(i). The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOR The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (approximate to 68-65 Ma). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olivine nephelinites commonly contain macrocrysts of olivine and clinopyroxene. Some of these macrocrysts might represent fragments of the source region of the host magma transported to the Earth surface. If this hypothesis is correct these fragments can be used to characterize the composition of the source region and to put constraints on the magma generation process. In this study, we investigate the origin of macrocrysts and mineral aggregates from an olivine nephelinite from the Kaiserstuhl, Germany. We focus on clinopyroxenes (Cpx), which can be divided into three groups. Cpx I is relict Cpx from aggregates with deformed olivine that is depleted in Ca and characterized by strong light rare earth element (LREE) fractionation, low Ti/Eu and negative high field strength element (HFSE) anomalies. Its geochemical signature is consistent with formation by carbonatite metasomatism and with equilibration in the Presence of orthopyroxene. Cpx II is Ca-rich Cpx, forming both aggregates with deformed olivine and individual macrocrysts. The LREE, as for Cpx I, are strongly fractionated. Convex REE patterns may be present. The depletion in HFSE is less pronounced. Cpx III is oscillatory zoned Cpx phenociysis showing enrichment in Ca, convex REE patterns and no HFSE anomalies. The transition in the trace element abundances between the Cpx of the three groups is gradual. However, Cpx I and H did not crystallize from the host magma, as demonstrated by the presence of kink-bands and undulose extinction in the associated olivine and by the composition of alkali aluminosilicate glass inclusions in Cpx H. Based on the Cpx relationships, we interpret the studied suite of macrocrysts and mineral aggregates as a mixture of disintegrated fragments of the source region of the host olivine nephelinite. The process of melt generation was multi-stage. A primary carbonatite melt ascending from deeper levels in the mantle, probably from the dolomite-garnet peridotite stability field, reacted with mantle peridotite along the solidus ledge in the system lherzolite-CO2 (< 20-22 kbar) and started to crystallize carbonate minerals. Because of its low solidus temperature, the resulting carbonate-wehrlite assemblage melted incongruently with the formation of additional clinopyroxene. The carbonatite melt evolved during crystallization of carbonate minerals and concomitant incongruent melting of the carbonate-wehrlite, accompanied by the segregation of incipient alkali aluminosilicate melts. As a consequence of fast reaction rates in the presence of a carbonatite melt, this process probably took place under disequilibrium conditions. Further melting of the assemblage wehrlite + alkali aluminosilicate melt led to the generation of the olivine nephelinite magma. It entrained fragments of the wehrlite and brought them to the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite-sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal-metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245A degrees C) then for siderite vein (around 185A degrees C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal-metasomatic origin of the Ljubija iron deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oceanic crust fragments exposed in central America, in north-western South America, and in the Caribbean islands have been considered to represent accreted remnants of the Caribbean-Colombian Oceanic Plateau (CCOP). On the basis of trace element and Nd, Sr, and Pb isotopic compositions we infer that cumulate rocks, basalts, and diabases from coastal Ecuador have a different source than the basalts from the Dominican Republic. The latter suite includes the 86 Ma basalts of the Duarte Complex which are light rare earth element (REE) -enriched and display (relative to normal mid-ocean ridge basalts, NMORB) moderate enrichments in large ion lithophile elements, together with high Nb, Ta, Pb, and low Th contents. Moreover, they exhibit a rather restricted range of Nd and Pb isotopic ratios consistent with their derivation from an ocean island-type mantle source, the composition of which includes the HIMU (high U-238/Pb-204) component characteristic of the Galapagos hotspot. In contrast, the 123 Ma Ecuadorian oceanic rocks have flat REE patterns and (relative to NMORB) are depleted in Zr, Hf, Th, and U. Moreover, they show a wide range of Nd and Pb isotopic ratios intermediate between those of ocean island basalts and NMORB. It is unlikely, on geochemical grounds, that the plume source of the Ecuadorian fragments was similar to that of the Galapagos. In addition, because of the NNE motion of the Farallon plate during the Early Cretaceous, the Ecuadorian oceanic plateau fragments could not have been derived from the Galapagos hotspot but were likely formed at a ridge-centered or near-ridge hotspot somewhere in the SE Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Triassic submarine alkali basalts and hawaiites were collected from two superimposed tectonic slices belonging to the Kara Dere - Sayrun unit of the Middle Antalya nappes, southwestern Turkey. New determinations on conodont faunas allow to date this sequence to the Lower Carnian (Julian). The volcanic rocks show rather homogeneous compositions, with high TiO2 and relatively low MgO and Ni contents which suggest olivine fractionation. Their primitive mantle-normalised multi-elements plots show Nb and Ta enrichments relative to La, Pb negative anomalies and heavy rare earth element and Y depletions typical of intraplate ocean island basalts. These characteristics are consistent with the major and trace element compositions of their primary clinopyroxene phenocrysts, which do not show any feature ascribable to crustal contamination. The studied lavas display a restricted range of epsilon Nd (+4.6 to +5.2) which falls within the range of ocean island basalts. Their initial (Nd-143/Nd-144)i ratios are too low to be explained by a simple mixing line between depleted MORB mantle (DMM) and HIMU components. Their Pb and Nd isotopic compositions plot along a mixing line between HIMU component and an enriched mantle, the composition of which could be the result of the addition of about 5 to 8% of an EM2 component (recycled marine sediments) to DMM. The lack of evidence for any continental crustal component. in their genesis could be consistent with their emplacement in an intra-oceanic setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.