498 resultados para radionuclides
Resumo:
Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion 'Kraton-3' conducted near the Polar Circle (65.9°N, 112.3°E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15000 kBq/m**2, which significantly exceeds the value of 0.44 kBq/m**2 deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average 137Cs/90Sr ratio in the ground contamination originated from the 'Kraton-3' fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of 90Sr in all undisturbed soil profiles studied is more rapid than that for 137Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.
Resumo:
As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE), Polonium-210 and Lead-210 have been measured in the water column and on suspended particulate matter in February to April 2008. Our goal was to resolve the affinities of 210Po and 210Pb to transparent exopolymer particles (TEP) and particulate organic carbon (POC). Polonium-210 and Lead-210 in the ocean can be used to identify the sources and sinks of suspended matter. In seawater, Polonium-210 (210Po) and Lead-210 (210Pb) are produced by stepwise radioactive decay of Uranium-238. 210Po (138 days half life) and 210Pb (22.3 years half life) have high affinities for suspended particles. Those radionuclides are present in dissolved form and adsorbed onto particles. Following adsorption onto particle surfaces, 210Po especially is transported into the interior of cells where it bonds to proteins. In this way, 210Po also accumulates in the food chain. 210Po is therefore considered to be a good tracer for POC, and traces particle export over a timescale of months. 210Pb (22.3 years half life) adsorbs preferably onto structural components of cells, biogenic silica and lithogenic particles, and is therefore a better tracer more rapidly sinking matter. Water samples were taken with Niskin bottles. Dissolved Polonium-210 and Lead-210 activities refer to the fraction < 1µm. Particulate Polonium-210 and Lead-210 refer to the activity on particles >1µm retained on nucleopore filters. Zooplankton retained on the filters was systematically removed as this study focused on phytoplankton and exudates. The data have been submitted to Pangaea following a Polonium-Lead intercalibration exercise organized by GEOTRACES, where the AWI lab results range within the data standard deviation from 10 participating labs.