998 resultados para proton conductive electrolytes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ monitoring of conductivity and potential response of conductive polymers during electrochemical process had been described. A renewable carbon fibre array ring-glassy carbon disk electrode was used for this purpose. Poly(3-methylthiophene) and polythiophene were investigated with this method, and some 5 orders in magnitude of conductivity changes were observed during the electrochemical redox process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.