964 resultados para problema isoperimetrico serie di Fourier convergenza in L^2 identità di Parseval
Resumo:
ACM Computing Classification System (1998): E.4.
Resumo:
2000 Mathematics Subject Classification: 46B20, 46B26.
Resumo:
Oxidative stress plays a key role in the development of Type 2 Diabetes (T2D). This cross-sectional study examined the relationship among serum levels of manganese superoxide dismutase (MnSOD), 8-hydroxy-2’-deoxyguanosine (8OHdG), dietary antioxidant intakes and glycemic control in African Americans (n=209) and Haitian Americans (n=234) with and without T2D. ^ African Americans had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD ( r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. ^ The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet. ^
Resumo:
Introduction - The present study aimed to describe characteristics of patients with type 2 diabetes (T2D) in UK primary care initiated on dapagliflozin, post-dapagliflozin changes in glycated hemoglobin (HbA1c), body weight and blood pressure, and reasons for adding dapagliflozin to insulin. Methods - Retrospective study of patients with T2D in the Clinical Practice Research Datalink with first prescription for dapagliflozin. Patients were included in the study if they: (1) had a first prescription for dapagliflozin between November 2012 and September 2014; (2) had a Read code for T2D; (3) were registered with a practice for at least 6 months before starting dapagliflozin; and (4) remained registered for at least 3 months after initiation. A questionnaire ascertained reason(s) for adding dapagliflozin to insulin. Results - Dapagliflozin was most often used as triple therapy (27.7%), dual therapy with metformin (25.1%) or added to insulin (19.2%). Median therapy duration was 329 days [95% confidence interval (CI) 302–361]. Poor glycemic control was the reason for dapagliflozin initiation for 93.1% of insulin-treated patients. Avoiding increases in weight/body mass index and insulin resistance were the commonest reasons for selecting dapagliflozin versus intensifying insulin. HbA1c declined by mean of 9.7 mmol/mol (95% CI 8.5–10.9) (0.89%) 14–90 days after starting dapagliflozin, 10.2 mmol/mol (95% CI 8.9–11.5) (0.93%) after 91–180 days and 12.6 mmol/mol (95% CI 11.0–14.3) (1.16%) beyond 180 days. Weight declined by mean of 2.6 kg (95% CI 2.3–2.9) after 14–90 days, 4.3 kg (95% CI 3.8–4.7) after 91–180 days and 4.6 kg (95% CI 4.0–5.2) beyond 180 days. In patients with measurements between 14 and 90 days after starting dapagliflozin, systolic and diastolic blood pressure decreased by means of 4.5 (95% CI −5.8 to −3.2) and 2.0 (95% CI −2.9 to −1.2) mmHg, respectively from baseline. Similar reductions in systolic and diastolic blood pressure were observed after 91–180 days and when follow-up extended beyond 180 days. Results were consistent across subgroups. Conclusion - HbA1c, body weight and blood pressure were reduced after initiation of dapagliflozin in patients with T2D in UK primary care and the changes were consistent with randomized clinical trials.
Resumo:
In this paper, we will demonstrate the possibility of opening a new telecommunications transmission window around the 2 μm wavelength, in order to exploit the potential low loss of hollow-core photonic bandgap fibers, with the benefits of significantly lower non-linearity and latency. We will show recent efforts developing a dense wavelength division multiplexing testbed at this waveband, with 100 GHz spacing wavelength channels and 105 Gbit/s total capacity achieved.
Resumo:
Oxidative stress plays a key role in the development of Type 2 Diabetes (T2D). This cross-sectional study examined the relationship among serum levels of manganese superoxide dismutase (MnSOD), 8-hydroxy-2’-deoxyguanosine (8OHdG), dietary antioxidant intakes and glycemic control in African Americans (n=209) and Haitian Americans (n=234) with and without T2D. African Americans had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD (r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet. African Americans were significantly younger (53.3 vs. 55.6 years), had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD (r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet.
Resumo:
Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.
Resumo:
Activation triggers the exchange of subunits in Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.
Resumo:
Diabetes is fast gaining the status of a potential epidemic in India, with >62 million individuals currently diagnosed with the disease.1 India currently faces an uncertain future in relation to the potential burden that diabetes may impose on the country. An estimated US$ 2.2 billion would be needed to sufficiently treat all cases of type 2 diabetes mellitus (T2DM) in India.2 Many interventions can reduce the burden of this disease. However, health care resources are limited; thus, interventions for diabetes treatment should be prioritized.
Resumo:
International audience