939 resultados para prestressed concrete
Resumo:
Approximately 40,000 tons of deteriorated asphalt concrete has been removed from Interstate 80 in Cass County and stockpiled. Laboratory tests indicate that this material has considerable value when upgraded with new aggregate and asphalt cement. This report documents the procedures used and results obtained on an experimental recycling project. It was demonstrated that present drum mixing-recycling equipment and procedures can be used to utilize this material with satisfactory results. Laboratory analyses of material components and mixtures were performed; these analyses indicate mixture can be produced that is uniform, stable, and very closely resembles mixture produced with all virgin material. A 1700 foot long test section was constructed on US 169 in Kossuth County wherein salvaged asphalt concrete from I-80 in Cass County was utilized. The salvaged mix was blended with virgin aggregate and recycled through a modified drum mixing plant, the reprocessed mixture was satisfactorily placed 1 1/2 inches thick as a resurfacing course on an old PCC pavement. An inspection of the test section was made in December of 1978 to evaluate the performance after one full year of service. There was no evidence of rutting or shoving from traffic. The surface does, however, have a very dry and somewhat ravelled appearance. This can be related to a low asphalt content in the mix and some temperature control problems which were difficult to get fully corrected on such a short project and with a short supply of readily available materials.
Resumo:
In this paper are described the results of a research project that had the objective of developing construction procedures for restoring load transfer in existing jointed concrete pavements and of evaluating the effectiveness of the restoration methods. A total of 28 test sections with various load transfer devices were placed. The devices include split pipe, figure eight, vee, double vee, and dowel bars. Patching materials used on the project included three types of fast-setting grouts, three brands of polymer concrete, and plain portland cement concrete. The number and spacing of the devices and dowel bars were also variables in the project. Dowel bars and double vee devices were used on the major portion of the project. Performance evaluations were based on deflection tests conducted with a 20,000-lb axle load. Horizontal joint movement measurements and visual observations were also made. The short-term performance data indicate good results with the dowel bar installations regardless of patching materials. The sections with split pipe, figure eight, and vee devices failed in bond during the first winter cycle. The results with the double vee sections indicate the importance of the patching material to the success or failure of the load transfer system: some sections are performing well and other sections are performing poorly with double vee devices. Horizontal joint movement measurements indicate that neither the dowel bars nor the double vee devices are restricting joint movement.
Resumo:
Recently, a number of roads have begun to exhibit the onset of deterioration at relatively early ages. Since this deterioration appears to be the result of materials issues, data concerning raw materials, design, and paving conditions have been collected and analyzed for correlation between independent variables and deterioration. This analysis shows that there is a positive and statistically significant correlation between deterioration and the following variables: alkali and sulfate content of the cementitious materials, impermeable base course, paving temperature, and the presence of fly ash. This study also concludes that there is a significant need for improvement in data collection and maintenance by many organizations responsible for the production of concrete
Resumo:
Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.
Resumo:
Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.
Resumo:
This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.
Resumo:
Over the past several years we conducted a comprehensive study on the pore systems of limestones used as coarse aggregate in portland cement concrete (pee) and their relationship to freeze-thaw aggregate failure. A simple test called the Iowa Pore Index Test was developed and used to identify those coarse aggregates that had freeze-thaw susceptible pore systems. Basically, it identified those aggregates that could take on a considerable amount of water but only at a slow rate. The assumption was that if an aggregate would take on a considerable amount of water at a slow rate, its pore system would impede the outward movement of water through a critically saturated particle during freezing, causing particle fracture. The test was quite successful when used to identify aggregates containing susceptible pore systems if the aggregates were clean carbonates containing less than 2% or 3% insolubles. The correlation between service record, ASTM C666B and the pore index test was good, but not good enough. It became apparent over the past year that there were factors other than the pore system that could cause an aggregate to fail when used in pee. The role that silica and clay play in aggregate durability was studied.
Resumo:
The road paving cost continues to increase and the backlog of projects waiting for funding is growing. Finding a more cost-effective way to use the available money to pave roads will result in more miles of road being paved with the same amount of money. This project is in Cass County on G35 between US 71 and Norway-Center. It consists of a thin layer of asphalt over a base designed to achieve stability while having some permeability. This project was paved in 1996. An asphalt cement concrete pavement was chosen for the project based on cost, convenience, and historic portland cement concrete problems in Cass County. The new pavement gives quicker access time to farms and residences.
Resumo:
Testing the efficiency of Portland Cement Concrete (PCC) curing compounds is currently done following Test Method Iowa 901-D, May 2002. Concrete test specimens are prepared from mortar materials and are wet cured 5 hours before the curing compound is applied. All brands of curing compound submitted to the Iowa Department of Transportation are laboratory tested for comparative performance under the same test conditions. These conditions are different than field PCC paving conditions. Phase I tests followed Test Method Iowa 901-D, but modified the application amounts of the curing compound. Test results showed that the application of two coats of one-half thickness each increased efficiency compared to one full thickness coat. Phase II tests also used the modified application amounts, used a concrete mix (instead of a mortar mix) and applied curing compound a few minutes after molding. Measurements of losses, during spraying of the curing compound, were noted and were found to be significant. Test results showed that application amounts, testing techniques, concrete specimen mix design and spray losses do influence the curing compound efficiency. The significance of the spray losses indicates that the conventional test method being used (Iowa 901 D) should be revised.
Resumo:
The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.
Resumo:
The Iowa State Highway Commission Laboratory is called upon to determine the cement content of hardened concrete when field problems relating to batch weights are encountered. The standard test for determining the cement content is ASTM C-85. An investigation of this method by the New Jersey State Highway Department involving duplicate samples and four cooperating laboratories produced very erratic results, however, the results obtained by this method have not been directly compared to known cement contents of concrete made with various cements and various aggregates used in Iowa.
Resumo:
Seven asphaltic concrete resurfacing projects were tested for their frictional properties to determine the age-friction relationship of new paving. Projects studied included Type A asphaltic concrete which is generally used for higher traffic volume roads and Type B asphaltic concrete, a lower type material. Also included in the study were asphaltic concretes containing Type 3 and Type 4 coarse aggregate texture classifications. The classifications are based upon material type and grain size composition. Surfaces both with and without sprinkle treatment aggregates were also included. The data gathered suggests that properly designed and placed dense graded asphaltic concrete mixes are adequate to serve the traveling public at all ages tested.
Resumo:
The Iowa D.O.T. specifications do not require 100 percent of 50 blow Marshall density (generally 94%) for field compaction. However, stabilities are determined in the Laboratory on specimens compacted to 100 percent of Marshall density. The purpose of this study is to determine the stabilities of specimens compacted to various densities which are below 100 percent of the 50 blow Marshall density.
Resumo:
It has been observed in the Laboratory that an increase in oven heating time of relatively short duration between mixing and compaction of asphaltic concrete hot mixes can have an effect on the Marshall stability results obtained. The purpose of this short investigation is to determine the effect of oven heating time on the density and stability of hot mixes.
Resumo:
The 1982 cost of a two-inch asphaltic concrete overlay, with fabric, was an average of 85% of the cost of a three-inch overlay (see attached calculations). A structural number can be assigned to the extra inch of overlay, whereas it is doubtful that any number can be assigned to the fabric. The observations made on the projects in this report leave little reason to be optimistic on the use of fabrics under asphalt overlays. This is especially true of the Floyd, Dallas and Clarke county projects. A great amount of fabric is being used nationwide for this purpose, probably more from sales promotion than from actual documented performance. Full scale field testing is continuing each time a project is let utilizing fabric reinforcement under asphaltic concrete overlays. It has already become apparent that the use of fabrics in AC overlays is not always cost effective.