996 resultados para peptide antibody
Resumo:
An evaluation of the sensitivity and the specificity of the Anisakis simplex antigens purified by affinity chromatography was performed using sera from patients diagnosed with Anisakis sensitisation and sera from patients previously diagnosed with different helminthic infections. Only the sera of the patients diagnosed with Schistosoma mansoni or Onchocerca volvulus parasitic infections were negative against the A. simplex antigen and its purified fractions (PAK antigen: A. simplex antigen purified using columns prepared with anti-A. simplex rabbit IgG and PAS antigen: PAK antigen purified using columns prepared with anti-Ascaris suum rabbit IgG). However all the sera were positive against the A. suum antigen. In all the sera from the patients diagnosed with Anisakis sensitisation, the antibody levels detected using the purified antigens (PAK and PAS antigens) were lower than the observed using the A. simplex crude extract with the highest diminution in the case of the IgG. When these same sera were tested against the A. simplex crude extract by Western blot, several bands of high molecular masses were observed as well as, intense bands at 60 and/or 40 kDa. A concentration of these last proteins was observed in the PAK and the PAS antigens. When the sensitivity and the specificity determinations were performed, only seven of the 38 patients diagnosed of Anisakis sensitisation were positive, as well as, the sera from the patients diagnosed with parasitisms by Echinococcus granulosus or Fasciola hepatica.
Resumo:
Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.
Resumo:
Hemopressin (PVNFKFLSH), a novel bioactive peptide derived from the alpha1-chain of hemoglobin, was originally isolated from rat brain homogenates. Hemopressin causes hypotension in anesthetized rats and is metabolized in vivo and in vitro by endopeptidase 24.15 (EP24.15), neurolysin (EP24.16), and angiotensin-converting enzyme (ACE). Hemopressin also exerts an antinociceptive action in experimental inflammatory hyperalgesia induced by carrageenin or bradykinin via a mechanism that is independent of opioids. These findings suggest that this peptide may have important regulatory physiological actions in vivo.
Resumo:
Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf) density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Mastomys coucha has been used widely for various studies in filariasis. The present study was to assess microfilaraemia as well as the humoral immune response of M. coucha during various stages of B. malayi development and their localization in different organs. The result showed that the density of mf in the circulating blood of the experimental animal depended upon the number of female worms as well as the location and co-existence of male and female worms. The mf density in the blood increased with the increase in the number of females. The clearance of inoculated infective stage (L3) or single sex infection or segregation of male and female to different organs of infected host resulted in amicrofilaraemic condition. With respect to antibody response, those animals cleared L3 after inoculation and those with adult worm as well as mf showed low antibody levels. But those with developmental fourth stage and/or adult worms without mf showed significantly higher antibody levels.
Resumo:
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.
Resumo:
In Pseudomonas aeruginosa, the antibiotic dihydroaeruginoate (Dha) and the siderophore pyochelin are produced from salicylate and cysteine by a thiotemplate mechanism involving the peptide synthetases PchE and PchF. A thioesterase encoded by the pchC gene was found to be necessary for maximal production of both Dha and pyochelin, but it was not required for Dha release from PchE and could not replace the thioesterase function specified by the C-terminal domain of PchF. In vitro, 2-aminobutyrate, a cysteine analog, was adenylated by purified PchE and PchF proteins. In vivo, this analog strongly interfered with Dha and pyochelin formation in a pchC deletion mutant but affected production of these metabolites only slightly in the wild type. Exogenously supplied cysteine overcame the negative effect of a pchC mutation to a large extent, whereas addition of salicylate did not. These data are in agreement with a role for PchC as an editing enzyme that removes wrongly charged molecules from the peptidyl carrier protein domains of PchE and PchF.
Resumo:
In Brazil, until 2004, the immunization policy against diphtheria involved childhood vaccination with no official routine booster dose administered after 15 years of age. This study assessed functional antibody levels against diphtheria among blood donors. A total of 140 blood samples were collected, and diphtheria antitoxin levels were evaluated by Vero cell neutralization test. The mean age of the population was 34 years old (range: 18-61 years); 37.8% females and 62.2% males. Overall, 30.7% (95%, CI: 23.4-38.7) individuals presented neutralizing antitoxin antibody titers < 0.01 IU/ml; 42.1% (95%, CI: 34.1-50.4) showed values between 0.01-0.09 IU/ml and, 27.1% (95%, CI: 20.2-34.9) had ³ 0.1 IU/ml. In the subgroup of individuals with history of diphtheria immunization during childhood (85%), a number of 28.5% showed unprotective levels of circulating neutralizing antibody (< 0.01 IU/ml). Despite the continuous progress of immunization programs directed to Brazilian population, currently healthy adults remain susceptible to diphtheria.
Resumo:
A Neospora caninum 17 kDa protein fraction (p17) has been described as an immunodominant antigen (IDA) under reducing and non-reducing conditions. The aim of the present study was to investigate the diagnostic utility of p17 in cattle. In order to achieve this, p17 was purified by electroelution from whole N. caninum tachyzoite soluble extract and a p17-based Western blot (WB-p17) was developed. The p17 recognition was measured by densitometry and expressed as OD values to check the validity of the WB-p17. A total of 131 sera including sequential samples from naturally- and experimentally-infected calves and breeding cattle were analysed by WB-p17 and compared with IFAT using whole formalin-fixed tachyzoites as a reference test. The results obtained highlight the feasibility of using the N. caninum p17 in a diagnostic test in cattle. Firstly, the assay based on the p-17 antigen discriminated between known positive and negative sera from different cattle populations, breeding cattle and calves. Secondly, the p17 antigen detected fluctuations in the antibody levels and seroconversion in naturally- and experimentally-infected cattle. Significant differences in p-17 antigen recognition were observed between naturally infected aborting and non-aborting cattle, as well as significant antibody fluctuations over time in experimentally infected cattle, which varied between groups. Furthermore, the results obtained with WB-p17 are in accordance with the results obtained with the IFAT, as high agreement values were obtained when all bovine subpopulations were included (kappa = 0.86).
Resumo:
In the present study, we have explored ways of inducing a CTL response to a previously defined H-2Kd MHC class I restricted epitope in the circumsporozoite (CS) protein of Plasmodium berghei, and studied in detail the fine specificity of the response. We found that the s.c. injection of a variety of synthetic peptides emulsified in Freund's adjuvant efficiently induced a specific CTL response in (BALB/c x C57BL/6)F1 (H-2d x H-2b) mice. In contrast, BALB/c mice responded only marginally, consistent with the possible requirement for a concomitant Th response that would be provided by the C57BL/6 strain. Similar to our previous observations in analyzing CTL clones from sporozoite-immunized mice, the CTL response induced by peptide immunization was in part cross-reactive with an epitope from the Plasmodium yoelii species. The minimal P. berghei CS epitope, the octapeptide PbCS 253-260, was studied in detail by the analysis of a series of variant CS peptides containing single Ala substitutions. The relative antigenic activity for each variant peptide was calculated for 28 different CTL clones. Overall, the response to this P. berghei CTL epitope appeared to be extremely diverse in terms of fine specificity. This was evident among the CTL derived from sporozoite-immunized mice, as well as among those from peptide-immunized animals. The heterogeneity found at the functional level correlates with the highly diverse TCR repertoire that we have found for the same series of CTL clones in a study that is reported separately. The relative competitor activity for each Ala-substituted peptide was also determined in a quantitative functional competition assay. For the residues (Tyr253 and Ile260) within the 8-mer CS peptide, substitution with Ala reduced competitor activity by at least 40-fold, and for two others the reduction was 5- to 10-fold. When the relative antigenic activity for each CTL/peptide combination was normalized to the relative competitor activity of the peptide, a striking pattern emerged. The two residues that most affected competitor activity showed no additional effect on recognition beyond that observed for competition. In marked contrast, Ala substitutions at the other five positions tested varied widely, depending on the CTL/peptide combination. This pattern not only supports a model whereby the Tyr253 and Ile260 residues anchor the peptide to the Kd molecule, but also implies that they are virtually inaccessible to the TCR.
Resumo:
Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS: The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS: The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION: We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.
Resumo:
Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.
Resumo:
The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.
Resumo:
Cancer is the second leading cause of mortality worldwide. Cancer progression leads to metastasis formation, which accounts for more than ninety percent of cancer-related death. Metastases are more difficult to be surgically removed because of their invasive behavior and shape. In addition, during their transformation journey, they become more and more resistant to anticancer drugs. Significant improvements have been achieved in therapy against cancer in recent years but targeting the metastatic cascade remains the Achilles heel of the cure against cancer. A First step in the metastatic process is the escape of cancer cells from the primary tumor site. This involves an increase in cell motility and the concomitant ability to clear a path through the extracellular matrix. From a therapeutic point of view, inhibition of cell migration is a logical approach to develop anti-metastatic drugs. Our lab previously developed a cell permeable peptide derived from a caspase-3-generaied fragment of the RasGAP protein called TAT-RasGAP317-326. This peptide efficiently and specifically sensitizes cancer cells to chemotherapy- and radiotherapy-induced ceil death, which allows decreasing the anticancer drug doses and eventually their associated side- effects. In the present study we discovered that TAT-RasGAP317.326 also increases cell adhesion which was associated with inhibition of cell migration and invasion into the extracellular matrix. The ability of TAT-RasGAP317.326 to increase ceil adhesion involves the dramatic depolymerization of actin cytoskekton together with redistribution of focal adhesions. We found that the inhibitory effects on migration were mediated by a RhoGAP tumor and metastasis suppressor cailed DLC1 (Deleted in Liver Cancer 1). Moreover. DEC 1 was found to be a direct RasGAP-interacting protein and this interaction requires the RasGAP tryptophan 317 residue, the very first RasGAP residue of TAT-RasGAP317.326. We then evaluated the roie of RasGAP fragments in the in vivo metastatic cascade. We found that breast cancer cells overexpressing the parental RasGAP fragment, to which the TAT-RasGAP317.326 peptide belongs, have a markedly decreased ability to form lung metastases. Unfortunately, we were not able to recapitulate these an ti-metastatic effects when TAT-RasGAP317.326 was injected. However, we later understood that this was due to the fact that TAT-RasGAP317.326 was not properly delivered to the primary tumors. Further work, aimed at better understanding of how TAT-RasGAP317.326 functions, revealed that the ten amino acid TAT-RasGAP317.326 peptide could, be narrowed down to a three amino acid TAT-RasGAP317.329 peptide while keeping its sensitizer activity. In parallel, investigations on the RasGAP-DLCl binding indicated that the arginine linger of the DLC1 GAP domain is required for this interaction, which suggests that TAT-RasGAP317.326 modulates the GAP activity of DLC1. Additional work should be performed to fully elucidate its mechanism of action and render TAT-RasGAP317.326 usable as a tool to fight cancer on two fronts, by improving chemotherapy and preventing metastatic progression. - Le cancer est la deuxième cause de mortalité dans le monde. La formation de métastases est la dernière étape de la progression cancéreuse et représente plus du nonante pour cent des morts induites par le cancer. De par leur morphologie et comportement invasifs, ii est difficile d'avoir recours à la chirurgie pour exciser des métastases. De plus, les cellules cancéreuses en progression deviennent souvent de plus en plus résistantes aux drogues anticancéreuses. Ces dernières années, des avancements significatifs ont contribué à l'amélioration de la lutte contre le cancer. Néanmoins, pouvoir cibler spécifiquement la cascade métastatique demeure cependant le talon d'Achille des thérapies anticancéreuses. Une première étape dans ie processus métastatique est l'évasion des cellules cancéreuses du site de la tumeur primaire. Ceci requiert une augmentation de la motiliié cellulaire couplée à la capacité de se frayer un chemin au sein de la matrice extracelluiaire. D'un point de vue thérapeutique, inhiber la migration cellulaire est une approche attrayante. Notre laboratoire a développé un peptide, nommé TAT-RasGAP317.326 dérivé d'un fragment qui est lui-même le résultat du clivage de la protéine RasGAP par la caspase-3. Ce peptide est capable de pénétrer les cellules cancéreuses et de les sensibiliser spécifiquement à la mort induite par la radiothérapie et la chimiothérapie. La finalité des effets de ce peptide est de pouvoir diminuer les doses des traitements anti-cancéreux et donc des effets secondaires qu'ils engendrent. Dans cette étude, nous avons découvert que TAT-RasGAP317.326 augmente l'adhésion des cellules et inhibe la migration cellulaire ainsi que l'invasion des cellules à travers une matrice extracellulaire. La capacité de TAT-RasGAP317.326 à induire l'adhésion repose sur ia dépolymérisation du cytosquelette d'actine associée à une redistribution des points d'ancrage cellulaire. Nous avons découvert que l'inhibition de ia migration par TAT-RasGAP317.326 nécessitait la présence d'un suppresseur de tumeur et de métastases appelé DLC1 (Deleted in Liver Cancer l), qui par ailleurs s'avère aussi être une protéine RhoGAP. De plus, nous avons aussi trouvé que DLC1 était un partenaire d'interaction de RasGAP et que cette interaction s'effectuait via l'acide aminé tryptophane 317 de RasGAP. qui s'avère être le premier acide aminé du peptide TAT-RasGAP317.326. Nous avons ensuite évalué le rôle joué par certains fragments de RasGAP dans le processus de métastatisation. Dans ce contexte, des cellules de cancer du sein qui sur-expriment un fragment de RasGAP contenant la séquence TAT-RasGAP317.326 ont vu leur potentiel métastatique diminuer drastiquerment. Malheureusement, aucun effet anti-métastatique n'a été obtenu après injection de TAT-RasGAP317.326 dans les souris. Cependant, nous avons réalisé rétrospectivement que TAT-RasGAP317.326 n'était pas correctement délivré à la tumeur primaire, ce qui nous empêche de tirer des conclusions sur le rôle anti-métastatique de ce peptide. La suite de cette étude visant à mieux comprendre comment TAT-RasGAP317.326 agit, a mené à la découverte que les dix acides aminés de TAT-RasGAP317.326 pouvaient être réduits à trois acides aminés, TAT-RasGAP317.329, tout en gardant l'effet sensibilisateur à la chimiothérapie. En visant à élucider le mode d'interaction entre RasGAP et DLC1, nous avons découvert qu'un acide aminé nécessaire à l'activité GAP de DLC1 était requis pour lier RasGAP, ce qui laisse présager que TAT-RasGAp317.32c, module i'activité GAP de DLC1. Des travaux supplémentaires doivent encore être effectués pour complètement élucider les mécanismes d'action de TAT-RasGAP317.326 et afin de pouvoir l'utiliser comme un outil pour combattre le cancer sur deux fronts, en améliorant les chimiothérapies et en inhibant la formation de métastases.
Resumo:
BACKGROUND: Glioblastoma multiforme (GBM), a highly invasive and vascular cancer, responds poorly to conventional cytotoxic therapy. Integrins, widely expressed in GBM and tumor vasculature, mediate cell survival, migration and angiogenesis. Cilengitide is a potent alphavbeta3 and alphavbeta5 integrin inhibitor. OBJECTIVE: To summarize the preclinical and clinical experience with cilengitide for GBM. METHODS: Preclinical studies and clinical trials evaluating cilengitide for GBM were reviewed. RESULTS/CONCLUSIONS: Cilengitide is active and synergizes with external beam radiotherapy in preclinical GBM models. In clinical trials for recurrent GBM, single-agent cilengitide has antitumor benefits and minimal toxicity. Among newly diagnosed GBM patients, single-arm studies incorporating cilengitide into standard external beam radiotherapy/temozolomide have shown encouraging activity with no increased toxicity and have led to a planned randomized Phase III trial.
Resumo:
Transfusion-transmitted malaria is rare, but it may produce severe problem in the safety of blood transfusion due to the lack of reliable procedure to evaluate donors potentially exposed to malaria. Here, we evaluated a new enzyme-linked immunosorbent assay malaria antibody test (ELISA malaria antibody test, DiaMed, Switzerland) to detect antibodies to Plasmodium vivax (the indigenous malaria) in the blood samples in the Republic of Korea (ROK). Blood samples of four groups were obtained and analyzed; 100 samples from P.vivax infected patients, 35 from recovery patients, 366 from normal healthy individuals, and 325 from domestic travelers of non-endemic areas residents to risky areas of ROK. P.vivax antibody levels by ELISA were then compared to the results from microscopic examination and polymerase chain reaction (PCR) test. As a result, the ELISA malaria antibody test had a clinical sensitivity of 53.0% and a clinical specificity of 94.0% for P.vivax. Twenty out of 325 domestic travelers (6.2%) were reactive and 28 cases (8.6%) were doubtful. Of the reactive and doubtful cases, only two were confirmed as acute malaria by both microscopy and PCR test. Thus we found that the ELISA malaria antibody test was insufficiently sensitive for blood screening of P.vivax in ROK.