474 resultados para patterning
Resumo:
International audience
Resumo:
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Resumo:
Is phraseology the third articulation of language? Fresh insights into a theoretical conundrum Jean-Pierre Colson University of Louvain (Louvain-la-Neuve, Belgium) Although the notion of phraseology is now used across a wide range of linguistic disciplines, its definition and the classification of phraseological units remain a subject of intense debate. It is generally agreed that phraseology implies polylexicality, but this term is problematic as well, because it brings us back to one of the most controversial topics in modern linguistics: the definition of a word. On the other hand, another widely accepted principle of language is the double articulation or duality of patterning (Martinet 1960): the first articulation consists of morphemes and the second of phonemes. The very definition of morphemes, however, also poses several problems, and the situation becomes even more confused if we wish to take phraseology into account. In this contribution, I will take the view that a corpus-based and computational approach to phraseology may shed some new light on this theoretical conundrum. A better understanding of the basic units of meaning is necessary for more efficient language learning and translation, especially in the case of machine translation. Previous research (Colson 2011, 2012, 2013, 2014), Corpas Pastor (2000, 2007, 2008, 2013, 2015), Corpas Pastor & Leiva Rojo (2011), Leiva Rojo (2013), has shown the paramount importance of phraseology for translation. A tentative step towards a coherent explanation of the role of phraseology in language has been proposed by Mejri (2006): it is postulated that a third articulation of language intervenes at the level of words, including simple morphemes, sequences of free and bound morphemes, but also phraseological units. I will present results from experiments with statistical associations of morphemes across several languages, and point out that (mainly) isolating languages such as Chinese are interesting for a better understanding of the interplay between morphemes and phraseological units. Named entities, in particular, are an extreme example of intertwining cultural, statistical and linguistic elements. Other examples show that the many borrowings and influences that characterize European languages tend to give a somewhat blurred vision of the interplay between morphology and phraseology. From a statistical point of view, the cpr-score (Colson 2016) provides a methodology for adapting the automatic extraction of phraseological units to the morphological structure of each language. The results obtained can therefore be used for testing hypotheses about the interaction between morphology, phraseology and culture. Experiments with the cpr-score on the extraction of Chinese phraseological units show that results depend on how the basic units of meaning are defined: a morpheme-based approach yields good results, which corroborates the claim by Beck and Mel'čuk (2011) that the association of morphemes into words may be similar to the association of words into phraseological units. A cross-linguistic experiment carried out for English, French, Spanish and Chinese also reveals that the results are quite compatible with Mejri’s hypothesis (2006) of a third articulation of language. Such findings, if confirmed, also corroborate the notion of statistical semantics in language. To illustrate this point, I will present the PhraseoRobot (Colson 2016), a computational tool for extracting phraseological associations around key words from the media, such as Brexit. The results confirm a previous study on the term globalization (Colson 2016): a significant part of sociolinguistic associations prevailing in the media is related to phraseology in the broad sense, and can therefore be partly extracted by means of statistical scores. References Beck, D. & I. Mel'čuk (2011). Morphological phrasemes and Totonacan verbal morphology. Linguistics 49/1: 175-228. Colson, J.-P. (2011). La traduction spécialisée basée sur les corpus : une expérience dans le domaine informatique. In : Sfar, I. & S. Mejri, La traduction de textes spécialisés : retour sur des lieux communs. Synergies Tunisie n° 2. Gerflint, Agence universitaire de la Francophonie, p. 115-123. Colson, J.-P. (2012). Traduire le figement en langue de spécialité : une expérience de phraséologie informatique. In : Mogorrón Huerta, P. & S. Mejri (dirs.), Lenguas de especialidad, traducción, fijación / Langues spécialisées, figement et traduction. Encuentros Mediterráneos / Rencontres Méditerranéennes, N°4. Universidad de Alicante, p. 159-171. Colson, J.-P. (2013). Pratique traduisante et idiomaticité : l’importance des structures semi-figées. In : Mogorrón Huerta, P., Gallego Hernández, D., Masseau, P. & Tolosa Igualada, M. (eds.), Fraseología, Opacidad y Traduccíon. Studien zur romanischen Sprachwissenschaft und interkulturellen Kommunikation (Herausgegeben von Gerd Wotjak). Frankfurt am Main, Peter Lang, p. 207-218. Colson, J.-P. (2014). La phraséologie et les corpus dans les recherches traductologiques. Communication lors du colloque international Europhras 2014, Association Européenne de Phraséologie. Université de Paris Sorbonne, 10-12 septembre 2014. Colson, J-P. (2016). Set phrases around globalization : an experiment in corpus-based computational phraseology. In: F. Alonso Almeida, I. Ortega Barrera, E. Quintana Toledo and M. Sánchez Cuervo (eds.), Input a Word, Analyse the World: Selected Approaches to Corpus Linguistics. Newcastle upon Tyne: Cambridge Scholars Publishing, p. 141-152. Corpas Pastor, G. (2000). Acerca de la (in)traducibilidad de la fraseología. In: G. Corpas Pastor (ed.), Las lenguas de Europa: Estudios de fraseología, fraseografía y traducción. Granada: Comares, p. 483-522. Corpas Pastor, G. (2007). Europäismen - von Natur aus phraseologische Äquivalente? Von blauem Blut und sangre azul. In: M. Emsel y J. Cuartero Otal (eds.), Brücken: Übersetzen und interkulturelle Kommunikationen. Festschrift für Gerd Wotjak zum 65. Geburtstag, Fráncfort: Peter Lang, p. 65-77. Corpas Pastor, G. (2008). Investigar con corpus en traducción: los retos de un nuevo paradigma [Studien zur romanische Sprachwissenschaft und interkulturellen Kommunikation, 49], Fráncfort: Peter Lang. Corpas Pastor, G. (2013). Detección, descripción y contraste de las unidades fraseológicas mediante tecnologías lingüísticas. In Olza, I. & R. Elvira Manero (eds.) Fraseopragmática. Berlin: Frank & Timme, p. 335-373. Leiva Rojo, J. (2013). La traducción de unidades fraseológicas (alemán-español/español-alemán) como parámetro para la evaluación y revisión de traducciones. In: Mellado Blanco, C., Buján, P, Iglesias N.M., Losada M.C. & A. Mansilla (eds), La fraseología del alemán y el español: lexicografía y traducción. ELS, Etudes Linguistiques / Linguistische Studien, Band 11. München: Peniope, p. 31-42. Leiva Rojo, J. & G. Corpas Pastor (2011). Placing Italian idioms in a foreign milieu: a case study. In: Pamies Bertrán, A., Luque Nadal, L., Bretana, J. &; M. Pazos (eds), (2011). Multilingual phraseography. Second Language Learning and Translation Applications. Baltmannsweiler: Schneider Verlag (Colección: Phraseologie und Parömiologie, 28), p. 289-298. Martinet, A. (1966). Eléments de linguistique générale. Paris: Colin. Mejri, S. (2006). Polylexicalité, monolexicalité et double articulation. Cahiers de Lexicologie 2: 209-221.
Resumo:
Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. This Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices. The parameter space in the design of the device layer structure, based around the III-V channel/barrier material options of Inx≥0.53Ga1-xAs/In0.52Al0.48As and Inx≥0.1Ga1-xSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm2/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the In0.85Ga0.15As (2.1% strain) structure. S/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions. A fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (Lside) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm. For high-k integration on GaSb, ex-situ ammonium sulphide ((NH4)2S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the Al2O3/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×1012cm-2eV-1 in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb. A number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (Id,sat=1.14mA/mm), double peaked transconductance (gm=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (Ron=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of Id,sat (11×), gm (5.5×) and Ron (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (Lside) from 1μm down to 70nm improved Id,sat (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state In0.3Ga0.7Sb-channel (Id,sat=49.4mA/mm, gm=12.3mS/mm, Ron=31.7kΩ.μm) and In0.4Ga0.6Sb-channel (Id,sat=38mA/mm, gm=11.9mS/mm, Ron=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
Resumo:
Aim: To investigate how diversity within the African migrant population in Scotland affects their understandings of HIV and uptake of HIV testing and treatment, in order to improve HIV-related outcomes. Background: In the UK, Africans have the worst outcomes for HIV infection, primarily due to late diagnosis. Improvement requires better understanding of the barriers to healthcare engagement. This PhD study investigates how diversity among first generation African migrants in Scotland could affect engagement with general healthcare and HIV related interventions and services. Methods: I conducted qualitative research, involving participant observation at two sites (an African religious group and an asylum seeker/refugee drop-in centre) and interviews with African migrants attending these and three additional sites (two advocacy charities and a student association). Data were collected in two cities (Glasgow and Edinburgh) and two smaller towns (Paisley and Kirkcaldy). I interviewed 27 Africans, including economic migrants (n=8), students (n=9) and asylum seeker/refugees (n=10) and 14 representatives from organisations with high levels of African attendees (e.g., country associations, community organisations, advocacy groups, commercial establishments and religious based organisations). Thematic data analysis was carried out. Results: Diversity of the population and related issues of identity: Participants were highly diverse and reported considerable heterogeneity in the African diaspora in Scotland. The identity of “African” was bound with various negative stereotypes and appeals to this identity did not necessarily have relevance for participants. Nature of African affiliated organisations in Scotland: There were a wide range of organisations that advertised their remit as catering for the African diaspora. They varied in consistency and sustainability and contributed towards healthcare engagement to different degrees. Engagement with healthcare: There were multiple experiences and understandings of the healthcare system within the sample as a whole, and to an extent by migrant type. Whilst the majority reported successful and satisfactory service use, distinct barriers emerged. These included: understandings of rights and access to care based on African models of healthcare; the interplay of religious based understandings with ideas about access to healthcare; and assumptions and anxiety about the connections between visa status and health status. Knowledge of HIV and engagement with HIV related services: Participants had good knowledge about HIV, with some notable exceptions, but there was no patterning by migrant type. They had diverse views about risk of HIV infection, most of which did not align with the HIV epidemiology that identifies African migrants as an at risk group. Most of the sample did not think targeting African migrants for HIV interventions would be successful and were hostile to the proposal for various reasons, especially because they believed it would perpetuate stigma and prejudice towards the African diaspora. There were mixed experiences of HIV related services, and prompts to test for HIV had elicited a range of reactions, the majority negative. Conclusion: Diversity within the African diaspora in Scotland should be taken into account to improve the salience and relevance of future HIV interventions. Attitudes towards current HIV testing promotion suggest that a more cooperative approach could be taken with African communities to build on existing relationships of trust and understandings of HIV.
Resumo:
The heart is a non-regenerating organ that gradually suffers a loss of cardiac cells and functionality. Given the scarcity of organ donors and complications in existing medical implantation solutions, it is desired to engineer a three-dimensional architecture to successfully control the cardiac cells in vitro and yield true myocardial structures similar to native heart. This thesis investigates the synthesis of a biocompatible gelatin methacrylate hydrogel to promote growth of cardiac cells using biotechnology methodology: surface acoustic waves, to create cell sheets. Firstly, the synthesis of a photo-crosslinkable gelatin methacrylate (GelMA) hydrogel was investigated with different degree of methacrylation concentration. The porous matrix of the hydrogel should be biocompatible, allow cell-cell interaction and promote cell adhesion for growth through the porous network of matrix. The rheological properties, such as polymer concentration, ultraviolet exposure time, viscosity, elasticity and swelling characteristics of the hydrogel were investigated. In tissue engineering hydrogels have been used for embedding cells to mimic native microenvironments while controlling the mechanical properties. Gelatin methacrylate hydrogels have the advantage of allowing such control of mechanical properties in addition to easy compatibility with Lab-on-a-chip methodologies. Secondly in this thesis, standing surface acoustic waves were used to control the degree of movement of cells in the hydrogel and produce three-dimensional engineered scaffolds to investigate in-vitro studies of cardiac muscle electrophysiology and cardiac tissue engineering therapies for myocardial infarction. The acoustic waves were characterized on a piezoelectric substrate, lithium niobate that was micro-fabricated with slanted-finger interdigitated transducers for to generate waves at multiple wavelengths. This characterization successfully created three-dimensional micro-patterning of cells in the constructs through means of one- and two-dimensional non-invasive forces. The micro-patterning was controlled by tuning different input frequencies that allowed manipulation of the cells spatially without any pre- treatment of cells, hydrogel or substrate. This resulted in a synchronous heartbeat being produced in the hydrogel construct. To complement these mechanical forces, work in dielectrophoresis was conducted centred on a method to pattern micro-particles. Although manipulation of particles were shown, difficulties were encountered concerning the close proximity of particles and hydrogel to the microfabricated electrode arrays, dependence on conductivity of hydrogel and difficult manoeuvrability of scaffold from the surface of electrodes precluded measurements on cardiac cells. In addition, COMSOL Multiphysics software was used to investigate the mechanical and electrical forces theoretically acting on the cells. Thirdly, in this thesis the cardiac electrophysiology was investigated using immunostaining techniques to visualize the growth of sarcomeres and gap junctions that promote cell-cell interaction and excitation-contraction of heart muscles. The physiological response of beating of co-cultured cardiomyocytes and cardiac fibroblasts was observed in a synchronous and simultaneous manner closely mimicking the native cardiac impulses. Further investigations were carried out by mechanically stimulating the cells in the three-dimensional hydrogel using standing surface acoustic waves and comparing with traditional two-dimensional flat surface coated with fibronectin. The electrophysiological responses of the cells under the effect of the mechanical stimulations yielded a higher magnitude of contractility, action potential and calcium transient.
Resumo:
Les petites molécules de type p à bandes interdites étroites sont de plus en plus perçues comme des remplaçantes possibles aux polymères semi-conducteurs actuellement utilisés conjointement avec des dérivés de fullerènes de type n, dans les cellules photovoltaïques organiques (OPV). Par contre, ces petites molécules tendent à cristalliser facilement lors de leur application en couches minces et forment difficilement des films homogènes appropriés. Des dispositifs OPV de type hétérojonction de masse ont été réalisés en ajoutant différentes espèces de polymères semi-conducteurs ou isolants, agissant comme matrices permettant de rectifier les inhomogénéités des films actifs et d’augmenter les performances des cellules photovoltaïques. Des polymères aux masses molaires spécifiques ont été synthétisés par réaction de Wittig en contrôlant précisément les ratios molaires des monomères et de la base utilisée. L’effet de la variation des masses molaires en fonction des morphologies de films minces obtenus et des performances des diodes organiques électroluminescentes reliées, a également été étudié. La microscopie électronique en transmission (MET) ou à balayage (MEB) a été employée en complément de la microscopie à force atomique (AFM) pour suivre l’évolution de la morphologie des films organiques minces. Une nouvelle méthode rapide de préparation des films pour l’imagerie MET sur substrats de silicium est également présentée et comparée à d’autres méthodes d’extraction. Motivé par le prix élevé et la rareté des métaux utilisés dans les substrats d’oxyde d’indium dopé à l’étain (ITO), le développement d’une nouvelle méthode de recyclage eco-responsable des substrats utilisés dans ces études est également présenté.
Resumo:
A basic requirement of a plasma etching process is fidelity of the patterned organic materials. In photolithography, a He plasma pretreatment (PPT) based on high ultraviolet and vacuum ultraviolet (UV/VUV) exposure was shown to be successful for roughness reduction of 193nm photoresist (PR). Typical multilayer masks consist of many other organic masking materials in addition to 193nm PR. These materials vary significantly in UV/VUV sensitivity and show, therefore, a different response to the He PPT. A delamination of the nanometer-thin, ion-induced dense amorphous carbon (DAC) layer was observed. Extensive He PPT exposure produces volatile species through UV/VUV induced scissioning. These species are trapped underneath the DAC layer in a subsequent plasma etch (PE), causing a loss of adhesion. Next to stabilizing organic materials, the major goals of this work included to establish and evaluate a cyclic fluorocarbon (FC) based approach for atomic layer etching (ALE) of SiO2 and Si; to characterize the mechanisms involved; and to evaluate the impact of processing parameters. Periodic, short precursor injections allow precise deposition of thin FC films. These films limit the amount of available chemical etchant during subsequent low energy, plasma-based Ar+ ion bombardment, resulting in strongly time-dependent etch rates. In situ ellipsometry showcased the self-limited etching. X-ray photoelectron spectroscopy (XPS) confirms FC film deposition and mixing with the substrate. The cyclic ALE approach is also able to precisely etch Si substrates. A reduced time-dependent etching is seen for Si, likely based on a lower physical sputtering energy threshold. A fluorinated, oxidized surface layer is present during ALE of Si and greatly influences the etch behavior. A reaction of the precursor with the fluorinated substrate upon precursor injection was observed and characterized. The cyclic ALE approach is transferred to a manufacturing scale reactor at IBM Research. Ensuring the transferability to industrial device patterning is crucial for the application of ALE. In addition to device patterning, the cyclic ALE process is employed for oxide removal from Si and SiGe surfaces with the goal of minimal substrate damage and surface residues. The ALE process developed for SiO2 and Si etching did not remove native oxide at the level required. Optimizing the process enabled strong O removal from the surface. Subsequent 90% H2/Ar plasma allow for removal of C and F residues.
Resumo:
Les parents à travers le monde chantent et parlent à leurs bébés. Ces deux types de vocalisations aux enfants préverbaux partagent plusieurs similarités de même que des différences, mais leurs conséquences sur les bébés demeurent méconnues. L’objectif de cette thèse était de documenter l’efficacité relative du chant et de la parole à capter l’attention des bébés sur de courtes périodes de temps (Étude 1) ainsi qu’à réguler l’affect des bébés en maintenant un état de satisfaction sur une période de temps prolongée (Étude 2). La première étude a exploré les réactions attentionnelles des bébés exposés à des enregistrements audio non familiers de chant et de parole. Lors de l’expérience 1, des bébés de 4 à 13 mois ont été exposés à de la parole joyeuse s’adressant au bébé (séquences de syllabes) et des berceuses fredonnées par la même femme. Ils ont écouté significativement plus longtemps la parole, qui contenait beaucoup plus de variabilité acoustique et d’expressivité que les berceuses. Dans l’expérience 2, des bébés d’âges comparables n’ont montré aucune écoute différentielle face à une version parlée ou chantée d’une chanson pour enfant turque, les deux versions étant exprimées de façon joyeuse / heureuse. Les bébés de l’expérience 3, ayant entendu la version chantée de la chanson turque ainsi qu’une version parlée de façon affectivement neutre ou s’adressant à l’adulte, ont écouté significativement plus longtemps la version chantée. Dans l’ensemble, la caractéristique vocale joyeuse plutôt que le mode vocal (chanté versus parlé) était le principal déterminant de l’attention du bébé, indépendamment de son âge. Dans la seconde étude, la régulation affective des bébés a été explorée selon l’exposition à des enregistrements audio non familiers de chant ou de parole. Les bébés ont été exposés à du chant ou de la parole jusqu’à ce qu’ils rencontrent un critère d’insatisfaction exprimée dans le visage. Lors de l’expérience 1, des bébés de 7 à 10 mois ont écouté des enregistrements de paroles s’adressant au bébé, de paroles s’adressant à l’adulte ou du chant dans une langue non familière (turque). Les bébés ont écouté le chant près de deux fois plus longtemps que les paroles avant de manifester de l’insatisfaction. Lors de l’expérience 2, des bébés ont été exposés à des enregistrements de paroles ou de chants issus d’interactions naturelles entre la mère et son bébé, dans une langue familière. Comme dans l’expérience 1, le chant s’adressant au bébé était considérablement plus efficace que les paroles pour retarder l’apparition du mécontentement. La construction temporelle du chant, avec notamment son rythme régulier, son tempo stable et ses répétitions, pourrait jouer un rôle important dans la régulation affective, afin de soutenir l’attention, rehausser la familiarité ou promouvoir l’écoute prédictive et l’entraînement. En somme, les études présentées dans cette thèse révèlent, pour la première fois, que le chant est un outil parental puissant, tout aussi efficace que la parole pour capter l’attention et plus efficace que la parole pour maintenir les bébés dans un état paisible. Ces découvertes soulignent l’utilité du chant dans la vie quotidienne et l’utilité potentielle du chant dans des contextes thérapeutiques variés impliquant des bébés.
Resumo:
The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.
Resumo:
Cells adapt to their changing world by sensing environmental cues and responding appropriately. This is made possible by complex cascades of biochemical signals that originate at the cell membrane. In the last decade it has become apparent that the origin of these signals can also arise from physical cues in the environment. Our motivation is to investigate the role of physical factors in the cellular response of the B lymphocyte. B cells patrol the body for signs of invading pathogens in the form of antigen on the surface of antigen presenting cells. Binding of antigen with surface proteins initiates biochemical signaling essential to the immune response. Once contact is made, the B cell spreads on the surface of the antigen presenting cell in order to gather as much antigen as possible. The physical mechanisms that govern this process are unexplored. In this research, we examine the role of the physical parameters of antigen mobility and cell surface topography on B cell spreading and activation. Both physical parameters are biologically relevant as immunogens for vaccine design, which can provide laterally mobile and immobile antigens and topographical surfaces. Another physical parameter that influences B cell response and the formation of the cell-cell junction is surface topography. This is biologically relevant as antigen presenting cells have highly convoluted membranes, resulting in variable topography. We found that B cell activation required the formation of antigen-receptor clusters and their translocation within the attachment plane. We showed that cells which failed to achieve these mobile clusters due to prohibited ligand mobility were much less activation competent. To investigate the effect of topography, we use nano- and micro-patterned substrates, on which B cells were allowed to spread and become activated. We found that B cell spreading, actin dynamics, B cell receptor distribution and calcium signaling are dependent on the topographical patterning of the substrate. A quantitative understanding of cellular response to physical parameters is essential to uncover the fundamental mechanisms that drive B cell activation. The results of this research are highly applicable to the field of vaccine development and therapies for autoimmune diseases. Our studies of the physical aspects of lymphocyte activation will reveal the role these factors play in immunity, thus enabling their optimization for biological function and potentially enabling the production of more effective vaccines.
Resumo:
Synthetic biology, by co-opting molecular machinery from existing organisms, can be used as a tool for building new genetic systems from scratch, for understanding natural networks through perturbation, or for hybrid circuits that piggy-back on existing cellular infrastructure. Although the toolbox for genetic circuits has greatly expanded in recent years, it is still difficult to separate the circuit function from its specific molecular implementation. In this thesis, we discuss the function-driven design of two synthetic circuit modules, and use mathematical models to understand the fundamental limits of circuit topology versus operating regimes as determined by the specific molecular implementation. First, we describe a protein concentration tracker circuit that sets the concentration of an output protein relative to the concentration of a reference protein. The functionality of this circuit relies on a single negative feedback loop that is implemented via small programmable protein scaffold domains. We build a mass-action model to understand the relevant timescales of the tracking behavior and how the input/output ratios and circuit gain might be tuned with circuit components. Second, we design an event detector circuit with permanent genetic memory that can record order and timing between two chemical events. This circuit was implemented using bacteriophage integrases that recombine specific segments of DNA in response to chemical inputs. We simulate expected population-level outcomes using a stochastic Markov-chain model, and investigate how inferences on past events can be made from differences between single-cell and population-level responses. Additionally, we present some preliminary investigations on spatial patterning using the event detector circuit as well as the design of stationary phase promoters for growth-phase dependent activation. These results advance our understanding of synthetic gene circuits, and contribute towards the use of circuit modules as building blocks for larger and more complex synthetic networks.
Resumo:
Phyllotaxis patterns in plants, or the arrangement of leaves and flowers radially around the shoot, have fascinated both biologists and mathematicians for centuries. The current model of this process involves the lateral transport of the hormone auxin through the first layer of cells in the shoot apical meristem via the auxin efflux carrier protein PIN1. Locations around the meristem with high auxin concentration are sites of organ formation and differentiation. Many of the molecular players in this process are well known and characterized. Computer models composed of all these components are able to produce many of the observed phyllotaxis patterns. To understand which parts of this model have a large effect on the phenotype I automated parameter testing and tried many different parameter combinations. Results of this showed that cell size and meristem size should have the largest effect on phyllotaxis. This lead to three questions: (1) How is cell geometry regulated? (2) Does cell size affect auxin distribution? (3) Does meristem size affect phyllotaxis? To answer the first question I tracked cell divisions in live meristems and quantified the geometry of the cells and the division planes using advanced image processing techniques. The results show that cell shape is maintained by minimizing the length of the new wall and by minimizing the difference in area of the daughter cells. To answer the second question I observed auxin patterning in the meristem, shoot, leaves, and roots of Arabidopsis mutants with larger and smaller cell sizes. In the meristem and shoot, cell size plays an important role in determining the distribution of auxin. Observations of auxin in the root and leaves are less definitive. To answer the third question I measured meristem sizes and phyllotaxis patterns in mutants with altered meristem sizes. These results show that there is no correlation between meristem size and average divergence angle. But in an extreme case, making the meristem very small does lead to a switch on observed phyllotaxis in accordance with the model.
Resumo:
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
Resumo:
Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.