879 resultados para oxygen enrichment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a mathematical model linking changes in cerebral blood flow, blood volume and the blood oxygenation state in response to stimulation. The model has three compartments to take into account the fact that the cerebral blood flow and volume as measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy have contributions from the arterial, capillary as well as the venous compartments of the vasculature. It is an extension to previous one-compartment hemodynamic models which assume that the measured blood volume changes are from the venous compartment only. An important assumption of the model is that the tissue oxygen concentration is a time varying state variable of the system and is driven by the changes in metabolic demand resulting from changes in neural activity. The model takes into account the pre-capillary oxygen diffusion by flexibly allowing the saturation of the arterial compartment to be less than unity. Simulations are used to explore the sensitivity of the model and to optimise the parameters for experimental data. We conclude that the three-compartment model was better than the one-compartment model at capturing the hemodynamics of the response to changes in neural activation following stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent nonlinear system by Friston et al. (2000. NeuroImage 12: 466–477) links the changes in BOLD response to changes in neural activity. The system consists of five subsystems, linking: (1) neural activity to flow changes; (2) flow changes to oxygen delivery to tissue; (3) flow changes to changes in blood volume and venous outflow; (4) changes in flow, volume, and oxygen extraction fraction to deoxyhemoglobin changes; and finally (5) volume and deoxyhemoglobin changes to the BOLD response. Friston et al. exploit, in subsystem 2, a model by Buxton and Frank coupling flow changes to changes in oxygen metabolism which assumes tissue oxygen concentration to be close to zero. We describe below a model of the coupling between flow and oxygen delivery which takes into account the modulatory effect of changes in tissue oxygen concentration. The major development has been to extend the original Buxton and Frank model for oxygen transport to a full dynamic capillary model making the model applicable to both transient and steady state conditions. Furthermore our modification enables us to determine the time series of CMRO2 changes under different conditions, including CO2 challenges. We compare the differences in the performance of the “Friston system” using the original model of Buxton and Frank and that of our model. We also compare the data predicted by our model (with appropriate parameters) to data from a series of OIS studies. The qualitative differences in the behaviour of the models are exposed by different experimental simulations and by comparison with the results of OIS data from brief and extended stimulation protocols and from experiments using hypercapnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and co-adsorption of lithium and oxygen at the surface of rutile-like manganese dioxide(b-MnO2), which are important in the context of Li–air batteries, are investigated using density functional theory. In the absence of lithium, the most stable surface of b-MnO2, the (110), adsorbs oxygen in the form of peroxo groups bridging between two manganese cations. Conversely, in the absence of excess oxygen, lithium atoms adsorb on the (110) surface at two different sites, which are both tricoordinated to surface oxygen anions, and the adsorption always involves the transfer of one electron from the adatom to one of the five-coordinated manganese cations at the surface, creating (formally) Li+ and Mn3+ species. The co-adsorption of lithium and oxygen leads to the formation of a surface oxide, involving the dissociation of the O2 molecule, where the O adatoms saturate the coordination of surface Mn cations and also bind to the Li adatoms. This process is energetically more favourable than the formation of gas-phase lithium peroxide (Li2O2) monomers, but less favourable than the formation of Li2O2 bulk. These results suggest that the presence of b-MnO2 in the cathode of a nonaqueous Li–O2 battery lowers the energy for the initial reduction of oxygen during cell discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple predator–prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the ‘paradox of enrichment’. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator–prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator–prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer–grazer system persists for only an intermediate zone of production—a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator–prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig’s paradox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment in resource availability theoretically destabilizes predator–prey dynamics (the paradox of enrichment). However, a minor change in the resource stoichiometry may make a prey toxic for the predator, and the presence of toxic prey affects the dynamics significantly. Here, theoretically we explore how, at increased carrying capacity, a toxic prey affects the oscillation or destabilization of predator–prey dynamics, and how its presence influences the growth of the predator as well as that of a palatable prey. Mathematical analysis determines the bounds on the food toxicity that allow the coexistence of a predator along with a palatable and a toxic prey. The overall results demonstrate that toxic food counteracts oscillation (destabilization) arising from enrichment of resource availability. Moreover, our results show that, at increased resource availability, toxic food that acts as a source of extra mortality may increase the abundance of the predator as well as that of the palatable prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In theory, enrichment of resource in a predator-prey model leads to destabilization of the system, thereby collapsing the trophic interaction, a phenomenon referred to as "the paradox of enrichment". After it was first proposed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator-prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form, inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that, although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms, which may differ among systems, need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factor Inhibiting HIF (FIH) is an oxygen-dependent asparaginyl hydroxylase that regulates the hypoxia-inducible factors (HIFs). Several proteins containing ankyrin repeat domains have been characterised as substrates of FIH, although there is little evidence for a functional consequence of hydroxylation on these substrates. This study demonstrates that the transient receptor potential vanilloid 3 (TRPV3) channel is hydroxylated by FIH on asparagine 242 within the cytoplasmic ankyrin repeat domain. Hypoxia, FIH inhibitors and mutation of asparagine 242 all potentiated TRPV3-mediated current, without altering TRPV3 protein levels, indicating that oxygen-dependent hydroxylation inhibits TRPV3 activity. This novel mechanism of channel regulation by oxygendependent asparaginyl hydroxylation is likely to extend to other ion channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulphide materials, in particular MoS2, have recently received great attention from the surface science community due to their extraordinary catalytic properties. Interestingly, the chemical activity of iron pyrite (FeS2) (the most common sulphide mineral on Earth), and in particular its potential for catalytic applications, has not been investigated so thoroughly. In this study, we use density functional theory (DFT) to investigate the surface interactions of fundamental atmospheric components such as oxygen and nitrogen, and we have explored the adsorption and dissociation of nitrogen monoxide (NO) and nitrogen dioxide (NO2) on the FeS2(100) surface. Our results show that both those environmentally important NOx species chemisorb on the surface Fe sites, while the S sites are basically unreactive for all the molecular species considered in this study and even prevent NO2 adsorption onto one of the non-equivalent Fe–Fe bridge sites of the (1 1)–FeS2(100) surface. From the calculated high barrier for NO and NO2 direct dissociation on this surface, we can deduce that both nitrogen oxides species are adsorbed molecularly on pyrite surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group of haemosporidian parasites is of general interest to basic and applied science, since several species infect mammals, leading to malaria and associated disease symptoms. Although the great majority of haemosporidian parasites appear in bird hosts, as in the case of Leucocytozoon buteonis, there is little genomic information about genetic aspects of their co-evolution with hosts. Consequently, there is a high need for parasite-enrichment strategies enabling further analyses of the genomes, namely without exposure to DNA-intercalating dyes. Here, we used flow cytometry without an additional labelling step to enrich L. buteonis from infected buzzard blood. A specific, defined area of two-dimensional scattergramms was sorted and the fraction was further analysed. The successful enrichment of L. buteonis in the sorted fraction was demonstrated by Giemsa-staining and qPCR revealing a clear increase of parasite-specific genes, while host-specific genes were significantly decreased. This is the first report describing a labelling-free enrichment approach of L. buteonis from infected buzzard blood. The enrichment of parasites presented here is free of nucleic acid-intercalating dyes which may interfere with fluorescence-based methods or subsequent sequencing approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.