814 resultados para organ weight
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
A modified Wittig polycondensation was developed by replacing the bulky -PPh3 with -PBu3 ylide. Our studies suggested that the modified polymerization dramatically enhances trans-selectivity due to the decreased 1.3-steric interaction between butyl chain and triphenylamine group, together with the 1,2-steric interaction between the phenyl ring of the ylide and the triphenylamine group of the aldehyde. Moreover, the method also enhances high-molecular weight products by increasing the activity and solubility of the ylide.
Resumo:
A series of alpha-diimine nickel(II) complexes containing chloro-substituted ligands, [(Ar)N=C(C10H6)C=N(Ar)]NiBr2 (4a, Ar = 2,3-C6H3Cl2; 4b, Ar = 2,4-C6H3Cl2; 4c, Ar = 2,5-C6H3Cl2; 4d, Ar = 2,6-C6H3Cl2; 4e, Ar = 2,4,6-C6H2Cl3) and [(Ar)N=C(C10H6)C=N(Ar)](2)NiBr2 (5a, Ar = 2,3-C6H3Cl2; 5b, Ar = 2,4-C6H3Cl2; 5c, Ar = 2,5-C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl-substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear alpha-olefins to high-molecular weight polyethylenes.
Resumo:
Poly(propylene carbonate) (PPC) with number average molecular weight (M-n) higher than 200 kg/mol was prepared via the terpolymerization of carbon dioxide, propylene oxide and diepoxide using Y(CCl3OO)(3)-ZnEt2-glycerine coordination catalyst. When equimolar ZnEt2 and diepoxide were used, double propagation active species were generated in situ by nucleophilic attack of metal alkoxide on diepoxide, leading to PPC of doubled M-n value. The molecular weight of PPC has dramatic influence on its thermal and mechanical performances. PPC with M of 227 kg/mol showed modulus of 6900 MPa, while the modulus of PPC with M-n of 109 kg/mol was only 4300 MPa. Moreover, when M-n increased from 109 to 227 kg/mol, a 37 degrees C increase of the onset degradation temperature was observed.
Resumo:
Flow-mode static and dynamic laser light scattering (SLS/DLS) studies of polymers, including polystyrene, polyethylene, polypropylene and poly(dimethylsiloxane) (PDMS), in 1,2,4-trichlorobenzene (TCB) at 150 degreesC were performed on a high temperature gel permeation chromatography (GPC) coupled with a SLS/DLS detector. Both absolute molecular weight (M) and molecular sizes (radius of gyration, R-g and hydrodynamic radius, R-h) of polymers eluting from the GPC columns were obtained simultaneously. The conformation of different polymers in TCB at 150 degreesC were discussed according to the scaling relationships between R-g, R-h and M and the rho-ratio (p = R-g/R-h). Flow-mode DLS results of PDMS were verified by batch-mode DLS study of the same sample. The presented technique was proved to be a convenient and quick method to study the shape and conformation of polymers in solution at high temperature. However, the flow-mode DLS was only applicable for high molecular weight polymers with a higher refractive index increment such as PDMS.
Resumo:
On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
The acid effects of some proteins on measuring their molecular weights were studied using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry ( MALDI-TOF-MS) and electrospray ionization mass spectrometry (ESI-MS). It was found that the signal intensity was enhanced through adjusting the acid concentration in some protein samples. In this paper, both MALDI-MS and ESI-MS was applied to examine the molecular weights of several standard proteins. And the proper acid concentration was detected in these spectra. In the meanwhile, it demonstrates that some associations of proteins in solution can be preserved into the gas phase and observed by the "soft ionization" mass spectrometry.
Resumo:
The molecular weight of recombinant hirudin ( rHV-2) was determined rapidly by matrix-assisted laser desorption/ionization time of fight mass spectrometry (MALDI-TOF-MS). The effects of the three types of matrixes were compared and discussed, alpha-cynao-4-hydroxycinnamic acid was proved to be the best matrix. It showed that MALDI-TOF-MS was superior to the traditional method of molecular weight determination of the biological macromolecules. The mass spectrum data proved that the primary structure of rHV-2 was correct and there was no amino acid deletion, mutation and modification in its expression, refolding and purification.
Resumo:
With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).
Resumo:
Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8
Resumo:
The lateral habits of low molecular weight short chain branched polyethylene single crystals from the melt were studied. Three crystallization temperatures (102, 104 and 106 degrees C) were selected for single crystal growth. It was found that the lateral habits of single crystals were asymmetric at all the crystallization temperatures selected. The electron diffraction patterns and tilting series experiments evidenced that there existed chain tilting in all the lamellae. It was the chain tilting that lead to the asymmetry of the growth rate and of lateral habits of the single crystals about the b-axis. The lateral habits substantially changed from the growth at 102 degrees C where the truncated lozenge single crystals formed with straight (110) faces to the growth at 104 degrees C where the lenticular single crystals appeared. This change occurred at 20 degrees C lower than that in a low molecular weight linear polyethylene with the same molecular weight. Furthermore, kinetics theory analysis evidenced that the change of lateral habits from truncated lozenge to lenticular shape resulted from the transition of growth regime. The results were the same as that of high molecular weight linear polyethylene but different to that of low molecular weight linear polyethylene. It may be attributed by the existence of short branched chains. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
The crystallization and melting behavior of mellocene-catalized branched and linear polyethylenes of low molecular weight was studied. It was found that the crystalline lattice of branched polyethylene is larger than that of linear polyethylene because of the existence of branched chains. The melting behavior of branched polyethylene is similar to that of linear polyethylene since the branched chains can not enter the lattice. However, the crystalline behavior of low molecular weight branched polyethylene is the same as that of high molecular weight linear polyethylene, but different with that of low molecular weigh linear polyethylene. Kinetics theory analysis evidenced that the transition temperature of growth regime of the branched polyethylene is about 20 degreesC lower than that of linear polyethylene with the same molecular weight. It may be attributed to the existence of short branched chains.
Resumo:
The purity and molecular weight of calmodulin have been determined by means of matrix-assisted laser desorption/ionization time of flight mass spectrometry, and the results have been discussed. The experimental results demonstrate that this method is high sensitive and rapid as compared with other traditional methods.