963 resultados para orbital currents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At DSDP Sites 534 (Central Atlantic) and 535 and 540 (Gulf of Mexico), and in the Vocontian Basin (France), Lower Cretaceous deposits show a very pronounced alternation of limestone and marl. This rhythm characterizes the pelagic background sedimentation and is independent of detritic intercalations related to contour and turbidity currents. Bed-scale cycles, estimated to be 6000-26,000 yr. long, comprise major and minor units. Their biological and mineralogic components, burrowing, heavy isotopes C and O, and some geochemical indicators, vary in close correlation with CaCO3 content. Vertical changes of frequency and asymmetry of the cycles are connected with fluctuations of the sedimentation rate. Plots of cycle thickness ("cyclograms") permit detailed correlations of the three areas and improve the stratigraphic subdivision of Neocomian deposits at the DSDP sites. Small-scale alternations, only observed in DSDP cores, comprise centimetric to millimetric banding and millimetric to micrometric lamination, here interpreted as varvelike alternations between laminae that are rich in calcareous plankton and others rich in clay. The laminations are estimated to correspond to cycles approximately 1,3, and 13 yr. in duration. The cyclic patterns appear to be governed by an interplay of continental and oceanic processes. Oceanic controls express themselves in variations of the biogenic carbonate flux, which depends on variations of such elements as temperature, oxygenation, salinity, and nutrient content. Continental controls modulate the influxes of terrigenous material, organic matter, and nutrients derived from cyclic erosion on land. Among the possible causes of cyclic sedimentation, episodic carbonate dissolution has been ruled out in favor of climatic fluctuations with a large range of periods. Such fluctuations are consistent with the great geographic extension shown by alternation controls and with the continuous spectrum of scales that characterizes limestone-marl cycles. The climatic variations induced by the Earth's orbital parameters (Milankovitch cycles) could be connected to bed-interbed alternations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic iron minerals are widespread and indicative sediment constituents in estuarine, coastal and shelf systems. We combine environmental magnetic, sedimentological and numerical methods to identify magnetite-enriched placer-like zones in a complex coastal system and delineate their formation mechanisms. Magnetic susceptibility and remanence measurements on 245 surficial sediment samples collected in and around Tauranga Harbour, the largest barrier-enclosed tidal estuary of New Zealand, reveal several discrete enrichment zones controlled by local hydrodynamic conditions. Active magnetite enrichment takes place in tidal channels, which feed into two coast-parallel nearshore magnetite-enriched belts centered at water depths of 6-10 m and 10-20 m. A close correlation between magnetite content and magnetic grain size was found, where higher susceptibility values are associated within coarser magnetic crystal sizes. Two key mechanisms for magnetite enrichment are identified. First, tide-induced residual currents primarily enable magnetite enrichment within the estuarine channel network. A coast-parallel, fine sand magnetite enrichment belt in water depths of less than 10 m along the barrier island has a strong decrease in magnetite content away from the southern tidal inlet and is apparently related to active coast-parallel transport combined with mobilizing surf zone processes. A second, less pronounced, but more uniform magnetite enrichment belt at 10-20 m water depth is composed of non-mobile, medium-coarse-grained relict sands, which have been reworked during post-glacial sea level transgression. We demonstrate the potential of magnetic methods to reveal and differentiate coastal magnetite enrichment patterns and investigate their formative mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data of twenty buoy stations were used to compile a new chart of permanent currents in the surface layer (10 m depth) for the region of the Yucatan shelf (Campeche Bank). It was found that vertical variations in direction of the currents are insignificant within the shallow plateau of the banks.

Relevância:

20.00% 20.00%

Publicador: