991 resultados para optical heterodyne detection
Resumo:
A total of 202 fish, representing 16 species, were collected during 2008 (March-October) in the Tanquan region of the Piracicaba River using nets. Flesh samples were collected and analyzed, using inductively coupled plasma-optical emission spectroscopy for Al, As, Cd, Co Cr, Cu, Mn, Mo, Ni, Ph, Se, Sn, Sr, and Zn. The results showed that the flesh of these fish all contained extremely high levels of Al and Sr, and moderately high levels of Cr, As, Zn, Ni. Mn and Pb. The metals were higher in these fish during rainy season, with fish collected during the months of March and October being the highest. In addition, the accumulation of metals was species-dependent. Cascudos (Hypostomus punctatus) and piranhas (Serrasalmus spilopleura) exhibited high levels of almost all of the metals, while curimbata (Prochilodus lineatus) had moderate levels. A few species, including pacu (Piaractus mesopotamicus) and dourado (Salminus maxillosus), had very low levels of most metals. The results show that the Piracicaba River Basin is widely contaminated with high levels of many toxic heavy metals, and that human consumption of some fish species is a human health concern. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pathogen detection in foods by reliable methodologies is very important to guarantee microbilogical safety. However, peculiar characteristics of certain foods, such as autochthonous microbiota, can directly influence pathogen development and detection. With the objective of verifying the performance of the official analytical methodologies for the isolation of Listeria monocytogenes and Salmonella in milk, different concentrations of these pathogens were inoculated in raw milk treatments with different levels of mesophilic aerobes, and then submitted to the traditional isolation procedures for the inoculated pathogens. Listeria monocytogenes was inoculated at the range of 0.2-5.2 log CFU/mL in treatments with 1.8-8.2 log CFU/mL. Salmonella Enteritidis was inoculated at 0.9-3.9 log CFU/mL in treatments with 3.0-8.2 log CFU/mL. The results indicated that recovery was not possible or was more difficult in the treatments with high counts of mesophilic aerobes and low levels of the pathogens, indicating interference of raw milk autochthonous microbiota. This interference was more evident for L. monocytogenes, once the pathogen recovery was not possible in treatments with mesophilic aerobes up to 4.0 log CFU/mL and inoculum under 2.0 log CFU/mL. For S. Enteritidis the interference appeared to be more non-specific. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Objectives: The resazurin microtitre plate assay (REMA) was evaluated to determine the susceptibility of Mycobacterium tuberculosis to pyrazinamide, and was compared with the broth microdilution method (BMM), the absolute concentration method (ACM) and pyrazinamidase (PZase) determination. Methods: Thirty-four M. tuberculosis clinical isolates (26 susceptible and 8 resistant to pyrazinamide) and reference strains M. tuberculosis H37Rv ATCC 27294 and Mycobacterium bovis AN5 were tested. Results: REMA and BMM showed 100% specificity and sensitivity when compared with ACM; BMM, however, demanded more reading time. The PZase determination assay showed 87.50% and 100% sensitivity and specificity, respectively. Conclusions: All tested methods in this preliminary study showed excellent sensitivity and specificity for the determination of pyrazinamide susceptibility of M. tuberculosis, but REMA was faster, low-cost and easy to perform and interpret. Additional studies evaluating REMA for differentiating pyrazinamide-resistant and-susceptible M. tuberculosis should be conducted on an extended panel of clinical isolates.
Resumo:
Anatoxin-a(s) is a potent irreversible inhibitor of the enzyme acetylcholinesterase with a unique N-hydroxyguanidine methylphosphate ester chemical structure. Determination of this toxin in environmental samples is hampered by the lack of specific methods for its detection. Using the toxic strain of Anabaena lemmermani PH-160 B as positive control, the fragmentation characteristics of anatoxin-a(s) under collision-induced dissociation conditions have been investigated and new LC-MS/MS methods proposed. Recommended ion transitions for correct detection of this toxin are 253 > 58, 253 > 159, 235 > 98 and 235 > 96. Chromatographic separation is better achieved under HILIC conditions employing a ZIC-HILIC column. This method was used to confirm for the first time the production of anatoxin-a(s) by strains of Anabaena oumiana ITEP-025 and ITEP-026. Considering no standard solutions are commercially available, our results will be of significant use for the correct identification of this toxin by LC-MS/MS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P>Thirty-five lymph node samples were taken from animals with macroscopic lesions consistent with Mycobacterium bovis infection. The animals were identified by postmortem examination in an abattoir in the northwestern region of state of Parana, Brazil. Twenty-two of the animals had previously been found to be tuberculin skin test positive. Tissue samples were decontaminated by Petroff`s method and processed for acid-fast bacilli staining, culture in Stonebrink and Lowenstein-Jensen media and DNA extraction. Lymph node DNA samples were amplified by PCR in the absence and presence (inhibitor controls) of DNA extracted from M. bovis culture. Mycobacterium bovis was identified in 14 (42.4%) lymph node samples by both PCR and by culture. The frequency of PCR-positive results (54.5%) was similar to that of culture-positive results (51.5%, P > 0.05). The percentage of PCR-positive lymph nodes increased from 39.4% (13/33) to 54.5% (18/33) when samples that were initially PCR-negative were reanalysed using 2.5 mu l DNA (two samples) and 1 : 2 diluted DNA (three samples). PCR sensitivity was affected by inhibitors and by the amount of DNA in the clinical samples. Our results indicate that direct detection of M. bovis in lymph nodes by PCR may be a fast and useful tool for bovine tuberculosis epidemic management in the region.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
Background/purpose The continuous advancement in cosmetic science has led to an increasing demand for the development of non-invasive, reliable scientific techniques directed toward claim substantiation, which is of utmost relevance, to obtain data regarding the efficacy and safety of cosmetic products. Methods In this work, we used the optical coherence tomography (OCT) technique to produce in vitro transversal section-images of human hair. We also compared the OCT signal before and after chemical treatment with an 18% w/w ammonium thioglycolate solution. Results The mean diameter of the medulla was 29 +/- 7 mu m and the hair diameter was 122 +/- 16 mu m in our samples of standard Afro-ethnic hair. A three-dimensional (3D) image was constructed starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 mu m at eight frames per second, and the entire 3D image was constructed in 60 s. Conclusion It was possible to identify, using the A-scan protocol, the principal structures: the cuticle, cortex and medulla. After chemical treatment, it was not possible to identify the main structures of hair fiber due to index matching promoted by deleterious action of the chemical agent.
Resumo:
A simple, rapid, selective and sensitive analytical method by HPLC with UV detection was developed for the quantification of carbamazepine, phenobarbital and phenytoin in only 0.2 mL of plasma. A C18 column (150 x 3.9 mm, 4 micra) using a binary mobile phase consisting of water and acetonitrile (70:30, v/v) at a flow rate of 0.5 mL/min were proposed. Validation of the analytical method showed a good linearity (0.3 to 20.0 mg/L for CBZ, 0.9 to 60.0 mg/L for PB and 0.6 to 40.0 mg/L for PHT), high sensitivity (LOQ: 0.3, 0.9 and 0.6 mg/L respectively). The method was applied for drug monitoring of antiepileptic drugs (AED) in 27 patients with epilepsy under polytherapy.
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.
Resumo:
We demonstrate tomographic imaging of the refractive index of turbid media using bifocal optical coherence refractometry (BOCR). The technique, which is a variant of optical coherence tomography, is based on the measurement of the optical pathlength difference between two foci simultaneously present in a medium of interest. We describe a new method to axially shift the bifocal optical pathlength that avoids the need to physically relocate the objective lens or the sample during an axial scan, and present an experimental realization based on an adaptive liquid-crystal lens. We present experimental results, including video clips, which demonstrate refractive index tomography of a range of turbid liquid phantoms, as well as of human skin in vivo.
Resumo:
Holographic interferometry measurements have been performed on high-speed, high-temperature gas flows with a laser output tuned near a resonant sodium transition. The technique allows the detection and quantification of the sodium concentration in the flow. By controlling the laser detuning and seeded sodium concentration, we performed flow visualization in low-density flows that are not normally detectable with standard interferometry. The technique was also successfully used to estimate the temperature in the boundary layer of the flow over a flat plate.
Resumo:
We propose and demonstrate, theoretically and experimentally, a novel achromatic optical phase shifter modulator based on a frequency-domain optical delay line configured to maintain zero group delay as variable phase delay is generated by means of tilting a mirror. Compared with previously reported phase shifter modulators, e.g., based on the Pancharatnam (geometric) phase, our device is high speed and polarization insensitive and produces a large, bounded phase delay that, uniquely, is one-to-one mapped to a measurable parameter, the tilt angle.
Resumo:
This paper describes experiments using optical tweezers to probe chloroplast arrangement, shape and consistency in cells of living leaf tissue and in suspension. Dual optical tweezers provided two-point contact on a single chloroplast or two-point contact on two adhered chloroplasts for manipulation in suspension. Alternatively, a microstirrer consisting of a birefringent particle trapped in an elliptically polarized laser trap was used to induce motion and tumbling of a selected chloroplast suspended in a solution. We demonstrate that displacement of chloroplasts inside the cell is extremely difficult, presumably due to chloroplast adhesion to the cytoskeleton and connections between organelles. The study also confirms that the chloroplasts are very thin and extremely cup-shaped with a concave inner surface and a convex outer surface.