840 resultados para operational reliability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the Public Bodies Bill 2010, the HFEA, cornerstone in the regulation of assisted reproduction technologies (ART) for the last twenty years, is due to be abolished. This implies that there is no longer a need for a dedicated regulator for ART and that the existing roles of the Authority as both operational compliance monitor, and instance of ethical evaluation, may be absorbed by existing healthcare regulators. This article presents a timely analysis of these disparate functions of the HFEA, charting reforms adopted in 2008 and assessing the impact of the current proposals. Taking assisted conception treatment as the focus activity, it will be shown that the last few years have seen a concentration on the HFEA as a technical regulator based upon the principles of Better Regulation, with little analysis of how the ethical responsibility of the Authority fits into this framework. The current proposal to abolish the HFEA continues to fail to address this crucial question. Notwithstanding the fact that the scope of the Authority's ethical role may be questioned, its abolition requires that the Government consider what alternatives exists - or need to be put in place - to provide both responsive operational regulation and a forum for ethical reflection and decision-making in an area which continues to pose regulatory challenges

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliability analysis of probabilistic forecasts, in particular through the rank histogram or Talagrand diagram, is revisited. Two shortcomings are pointed out: Firstly, a uniform rank histogram is but a necessary condition for reliability. Secondly, if the forecast is assumed to be reliable, an indication is needed how far a histogram is expected to deviate from uniformity merely due to randomness. Concerning the first shortcoming, it is suggested that forecasts be grouped or stratified along suitable criteria, and that reliability is analyzed individually for each forecast stratum. A reliable forecast should have uniform histograms for all individual forecast strata, not only for all forecasts as a whole. As to the second shortcoming, instead of the observed frequencies, the probability of the observed frequency is plotted, providing and indication of the likelihood of the result under the hypothesis that the forecast is reliable. Furthermore, a Goodness-Of-Fit statistic is discussed which is essentially the reliability term of the Ignorance score. The discussed tools are applied to medium range forecasts for 2 m-temperature anomalies at several locations and lead times. The forecasts are stratified along the expected ranked probability score. Those forecasts which feature a high expected score turn out to be particularly unreliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoring rules are an important tool for evaluating the performance of probabilistic forecasting schemes. A scoring rule is called strictly proper if its expectation is optimal if and only if the forecast probability represents the true distribution of the target. In the binary case, strictly proper scoring rules allow for a decomposition into terms related to the resolution and the reliability of a forecast. This fact is particularly well known for the Brier Score. In this article, this result is extended to forecasts for finite-valued targets. Both resolution and reliability are shown to have a positive effect on the score. It is demonstrated that resolution and reliability are directly related to forecast attributes that are desirable on grounds independent of the notion of scores. This finding can be considered an epistemological justification of measuring forecast quality by proper scoring rules. A link is provided to the original work of DeGroot and Fienberg, extending their concepts of sufficiency and refinement. The relation to the conjectured sharpness principle of Gneiting, et al., is elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

References (20)Cited By (1)Export CitationAboutAbstract Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation and performance of the Met Office visibility analysis and prediction system are described. The visibility diagnostic within the limited-area Unified Model is a function of humidity and a prognostic aerosol content. The aerosol model includes advection, industrial and general urban sources, plus boundary-layer mixing and removal by rain. The assimilation is a 3-dimensional variational scheme in which the visibility observation operator is a very nonlinear function of humidity, aerosol and temperature. A quality control scheme for visibility data is included. Visibility observations can give rise to humidity increments of significant magnitude compared with the direct impact of humidity observations. We present the results of sensitivity studies which show the contribution of different components of the system to improved skill in visibility forecasts. Visibility assimilation is most important within the first 6-12 hours of the forecast and for visibilities below 1 km, while modelling of aerosol sources and advection is important for slightly higher visibilities (1-5 km) and is still significant at longer forecast times

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ensemble prediction systems (EPS) are increasingly promoted as the scientific state-of-the-art for operational flood forecasting, the communication, perception, and use of the resulting alerts have received much less attention. Using a variety of qualitative research methods, including direct user feedback at training workshops, participant observation during site visits to 25 forecasting centres across Europe, and in-depth interviews with 69 forecasters, civil protection officials, and policy makers involved in operational flood risk management in 17 European countries, this article discusses the perception, communication, and use of European Flood Alert System (EFAS) alerts in operational flood management. In particular, this article describes how the design of EFAS alerts has evolved in response to user feedback and desires for a hydrographic-like way of visualizing EFAS outputs. It also documents a variety of forecaster perceptions about the value and skill of EFAS forecasts and the best way of using them to inform operational decision making. EFAS flood alerts were generally welcomed by flood forecasters as a sort of ‘pre-alert’ to spur greater internal vigilance. In most cases, however, they did not lead, by themselves, to further preparatory action or to earlier warnings to the public or emergency services. Their hesitancy to act in response to medium-term, probabilistic alerts highlights some wider institutional obstacles to the hopes in the research community that EPS will be readily embraced by operational forecasters and lead to immediate improvements in flood incident management. The EFAS experience offers lessons for other hydrological services seeking to implement EPS operationally for flood forecasting and warning. Copyright © 2012 John Wiley & Sons, Ltd.