932 resultados para neutron powder diffraction
Resumo:
Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.
Resumo:
Pós-graduação em Química - IQ
Resumo:
The microstructural behavior of industrial standardized cocoa butter samples and cocoa butter samples from three different Brazilian states is compared. The cocoa butters were characterized by their microstructural patterns, crystallization kinetics and polymorphic habits. The evaluation of these parameters aided in establishing relationships between the chemical compositions and crystallization behavior of the samples, as well as differentiating them in terms of technological and industrial potential for use in tropical regions.
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
We report a systematic study on the influence of the synthesis routes on the structural and magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-delta. We have prepared high-quality samples of this material by following a sol-gel method based on heat treatment in both inert argon and oxygen atmospheres in order to compare their effect on the formation of the superconducting phase using X-ray powder diffraction. Magnetic measurements (DC and AC susceptibility) clearly demonstrate that, for the same concentration of Pr, the superconducting transition temperature markedly increases in all samples prepared in argon atmosphere, including pure Pr-123. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.
Resumo:
In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.
Resumo:
The oxygen reduction reaction (ORR) was studied in KOH electrolyte on carbon supported epsilon-manganese dioxide (epsilon-MnO2/C). The epsilon-MnO2/C catalyst was prepared via thermal decomposition of manganese nitrate and carbon powder (Vulcan XC-72) mixtures. X-ray powder diffraction (XRD) measurements were performed in order to determine the crystalline structure of the resulting composite, while energy dispersive X-ray analysis (EDX) was used to evaluate the chemical composition of the synthesized material. The electrochemical studies were conducted using cyclic voltammetry (CV) and quasi-steady state polarization measurements carried out with an ultra thin layer rotating ring/disk electrode (RRDE) configuration. The electrocatalytic results obtained for 20% (w/w) Pt/C (E-TEK Inc., USA) and alpha-MnO2/C for the ORR, considered as one of the most active manganese oxide based catalyst for the ORR in alkaline media, were included for comparison. The RRDE results revealed that the ORR on the MnO2 catalysts proceeds preferentially through the complete 4e(-) reduction pathway via a 2 plus 2e(-) reduction process involving hydrogen peroxide as an intermediate. A benchmark close to the performance of 20% (w/w) Pt/C (E-TEK Inc., USA) was observed for the epsilon-MnO2/C material in the kinetic control region, superior to the performance of alpha-MnO2/C, but a higher amount of HO2- was obtained when epsilon-MnO2/C was used as catalyst. The higher production of hydrogen peroxide on epsilon-MnO2/C was related to the presence of structural defects, typical of this oxide, while the better catalytic performance in the kinetic control region compared to alpha-MnO2/C was related with the higher electrochemical activity for the proton insertion kinetics, which is a structure sensitive process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Non-doped as well as titanium and lutetium doped zirconia (ZrO2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti3+ e(g) -> t(2g) transition. The persistent luminescence originates from the same Ti3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature. (C) 2012 Optical Society of America
Resumo:
This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.
Resumo:
Witzkeite, ideally Na4K4Ca(NO3)(2)(SO4)(4)center dot 2H(2)O, is a new mineral found in the oxidation zone of the guano mining field at Punta de Lobos, Tarapaca region, Chile. It occurs as colorless, tabular crystals up to 140 mu m in length, associated with dittmanite and nitratine. Witzkeite is colorless and transparent, with a white streak and a vitreous luster. It is brittle, with Molts hardness 2 and distinct cleavage on {001}. Measured density is 2.40(2) g/cm(3), calculated density is 2.403 g/cm(3). Witzkeite is biaxial (-) with refractive indexes alpha = 1.470(5), beta = 1.495(5), gamma = 1.510(5), measured 2V = 50-70 degrees. The empirical composition is (electron microprobe, mean of five analyses, H2O, CO2, and N2O5 by gas chromatography; wt%): Na2O 12.83, K2O 22.64, CaO 7.57, FeO 0.44, SO3 39.96, N2O5 12.7, H2O 4.5, total 100.64; CO2 was not detected. The chemical formula, calculated based on 24 O, is: Na3.40K3.95Ca1.11Fe0.05(NO3)(1.93)(SO4)(4.10)(H4.10O1.81). Witzkeite is monoclinic, space group C2/c, with unit-cell parameters: a = 24.902(2), b = 5.3323(4), c = 17.246(1) angstrom, beta = 94.281(7)degrees, V = 2283.6(3) angstrom(3) (Z = 4). The crystal structure was solved using single-crystal X-ray diffraction data and refined to R-1(F) = 0.043. Witzkeite belongs to a new structure type and is noteworthy for the very rare simultaneous presence of sulfate and nitrate groups. The eight strongest X-ray powder-diffraction lines [d in angstrom (I in %) (h k l)] are: 12.38 (100) (2 0 0), 4.13 (19) (6 0 0), 3.10 (24) (8 0 0), 2.99 (7) ((8) over bar 02), 2.85 (6) (8 02), 2.69 (9) ((7) over bar 1 3), 2.48 (12) (10 0 0), and 2.07 (54) (12 0 0). The IR spectrum of witzkeite was collected in the range 390-4000 cm(-1). The spectrum shows the typical bands of SO42- ions (1192, 1154, 1116, 1101, 1084, 993, 634, and 617 cm(-1)) and of NO3- ions (1385, 1354, 830, 716, and 2775 cm(-1)). Moreover, a complex pattern of bands related to H2O is visible (bands at 3565, 3419, 3260, 2405, 2110, 1638, and 499 cm(-1)). The IR spectrum is discussed in detail.
Resumo:
Isotibolone is frequently found as an impurity in tibolone, a drug used for hormone reposition of post-menopause women, due to some inadequate tibolone synthesis or as a result of degradation during drug storage. The presence of isotibolone impurities should be detected and quantified in active pharmaceutical ingredient products of tibolone before its use in the manufacturing of medicaments. The X-ray powder diffraction technique offers the possibility of quantifying isotibolone amounts at different stages of drug production and storage, from the chemical synthesis to the final formulation. In the course of a study involving the quantitative analysis of isotibolone by X-ray powder diffraction, the authors determined the structure of the title compound using a recently developed approach (A. Gomez and S. Kycia, J. Appl. Crystallogr. 2011, 44, 708-713). The structure is monoclinic, space group P2(1) (4), with unit cell parameters a = 6.80704(7) angstrom, b = 20.73858(18) angstrom, c = 6.44900(6) angstrom, beta = 76.4302(5)degrees, V = 884.980(15) angstrom(3) and two molecules per unit cell (Z = 2). The molecules are hydrogen bonded in the ab plane forming layers that are held together in the crystal by van der Waals interactions along the c-axis.
Resumo:
This study investigates two lanthanide compounds (La(3+) and Sm(3+)) obtained in water/ethyl alcohol solutions employing the anionic surfactant diphenyl-4-amine sulfonate (DAS) as ligand. Both sulfonates were characterized through IR, TG/DTG (O(2) and N(2)). The thermal treatment of both compounds at 1273 K under air leaves residues containing variable percentages of lanthanide oxysulfide/oxysulfate phases shown by synchrotron high-resolution XRD pattern including the Rietveld analysis. The phase distributions found in the residues evidence the differences in the relative stability of the precursors.
Resumo:
Carlosbarbosaite, ideally (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaracu pegmatite, Jaguaracu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917-2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 mu m long and 2-5 mu m thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with alpha = 1.760(5), beta = 1.775(5), gamma = 1.795(5), 2V(meas) = 70(1)degrees, 2V(calc) = 83 degrees. The orientation is X parallel to a, Y parallel to b, Z parallel to c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample I, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (square 0.68Ca0.28Nd0.02Ce0.02)(Sigma=1.00)[U-1.44 square O-0.56(2.88)(H2O)(1.12)](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)(Sigma=2.01) O-4.72(OH)(3.20)(H2O)(2.08). For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (square 0.67Ca0.27Nd0.05Ce0.01)(Sigma=1.00)[U-1.04 square O-0.96(2.08)(H2O)(1.92)] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)(Sigma=2.00)O-4.00(OH)(3.96)(H2O)(2.04). The ideal endmember formula is (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O. Calculated densities are 4.713 g cm(-3) (sample 1) and 4.172 g cm(-3) (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in angstrom(I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmem, a = 14.150(6), b = 10.395(4), c = 7.529(3) angstrom, V = 1107(1) angstrom(3), Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven 0 atoms in a pentagonal bipyramidal arrangemet. The Nb site is coordinated by four 0 atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four 0 atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and comers to form Nb2O6(OH)(2) double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)(2) and UO5 chains share edges to form an open U-Nb-phi framework with tunnels along [001] that contain Ca(H2O)(4) clusters. Carlosbarbosaite is closely related to a family of synthetic U-Nb-O framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)(4) tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.
Resumo:
Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.