947 resultados para murine
Resumo:
Murine Hoxd-3 (Hox 4.1) genomic DNA and cDNA and Hoxa-3 (Hox 1.5) cDNA were cloned and sequenced. The homeodomains of Hoxd-3 and Hoxa-3 and regions before and after the homeodomain are highly conserved. Both Hoxa-3 and Hoxa-3 proteins have a proline-rich region that contains consensus amino acid sequences for binding to Src homology 3 domains of some signal transduction proteins. Northern blot analysis of RNA from 8- to 11-day-old mouse embryos revealed a 4.3-kb species of Hoxd-3 RNA, whereas a less abundant 3.0-kb species of Hoxd-3 RNA was found in RNA from 9- to 11-day-old embryos. Two species of Hoxd-3 poly(A)+ RNA, 4.3 and 6.0 kb in length, were found in poly(A)+ RNA from adult mouse kidney, but not in RNA from other adult tissues tested. Hoxd-3 mRNA was detected by in situ hybridization in 12-, 14-, and 17-day-old mouse embryos in the posterior half of the myelencephalon, spinal cord, dorsal root ganglia, first cervical vertebra, thyroid gland, kidney tubules, esophagus, stomach, and intestines.
Resumo:
A combination of psoralen and ultraviolet A radiation (PUVA) is widely used in the treatment of psoriasis. However, PUVA treatment increases the risk of developing skin cancer in psoriasis patients and induces skin cancer in mice. Since the DNA damage induced by PUVA is quite different from that induced by UV, we investigated whether PUVA-induced mouse skin cancers display carcinogen-specific mutations in the p53 tumor suppressor gene. The results indicated that 10 of 13 (77%) PUVA-induced skin tumors contained missense mutations predominantly at exons 6 and 7. In contrast, tumor-adjacent, PUVA-exposed skin from tumor-bearing animals did not exhibit p53 mutation in exons 4-8. Interestingly, about 40% of all mutations in PUVA-induced skin tumors occurred at 5'-TA sites, and an equal number of mutations occurred at one base flanking 5'TA or 5'-TAT sites. Since PUVA induces DNA cross-links exclusively at these sites and since UV "signature" mutations were rarely detected in PUVA-induced skin cancers, we can conclude that PUVA acts as a carcinogen by inducing unique PUVA signature mutations in p53. This finding may have implications for identifying the etiology of skin cancer in psoriasis patients who have undergone PUVA therapy.
Resumo:
Na+-phosphate (Pi) cotransport across the renal brush border membrane is the rate limiting step in the overall reabsorption of filtered Pi. Murine and human renal-specific cDNAs (NaPi-7 and NaPi-3, respectively) related to this cotransporter activity (type II Na+-Pi cotransporter) have been cloned. We now report the cloning and characterization of the corresponding mouse (Npt2) and human (NPT2) genes. The genes were cloned by screening mouse genomic and human chromosome 5-specific libraries, respectively. Both genes are approximately 16 kb and are comprised of 13 exons and 12 introns, the junctions of which conform to donor and acceptor site consensus sequences. Putative CAAT and TATA boxes are located, respectively, at positions -147 and -40 of the Npt2 gene and -143 and -51 of the NPT2 gene, relative to nucleotide 1 of the corresponding cDNAs. The translation initiation site is within exon 2 of both genes. The first 220 bp of the mouse and human promoter regions exhibit 72% identity. Two transcription start sites (at positions -9 and - 10 with respect to nucleotide 1 of NaPi-7 cDNA) and two polyadenylylation signals were identified in the Npt2 gene by primer extension, 5' and 3' rapid amplification of cDNA ends (RACE). A 484-bp 5' flanking region of the Npt2 gene, comprising the CAAT box, TATA box, and exon 1, was cloned upstream of a luciferase reporter gene; this construct significantly stimulated luciferase gene expression, relative to controls, when transiently transfected into OK cells, a renal cell line expressing type II Na+ -Pi cotransporter activity. The present data provide a basis for detailed analysis of cis and trans elements involved in the regulation of Npt2/NPT2 gene transcription and facilitate screening for mutations in the NPT2 gene in patients with autosomally inherited disorders of renal Pi reabsorption.
Resumo:
Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.
Resumo:
The Ah receptor (AHR) is a ligand-activated transcription factor that mediates a pleiotropic response to environmental contaminants such as benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. In an effort to gain insight into the physiological role of the AHR and to develop models useful in risk assessment, gene targeting was used to inactivate the murine Ahr gene by homologous recombination. Ahr-/- mice are viable and fertile but show a spectrum of hepatic defects that indicate a role for the AHR in normal liver growth and development. The Ahr-/- phenotype is most severe between 0-3 weeks of age and involves slowed early growth and hepatic defects, including reduced liver weight, transient microvesicular fatty metamorphosis, prolonged extramedullary hematopoiesis, and portal hypercellularity with thickening and fibrosis.
Resumo:
Hormonal and genetic factors strongly influence the susceptibility of inbred mice to hepatocarcinogenesis. Female C57BR/cdJ (BR) mice are extremely susceptible to liver tumor induction relative to other strains because they are genetically insensitive to the inhibition of hepatocarcinogenesis by ovarian hormones. To determine the genetic basis for the sensitivity of BR mice relative to resistant C57BL/6J (B6) mice, we treated 12-day-old B6BRF1 x B6 and B6BRF1 x B6BRF1 (F2) animals with N,N-diethylnitrosamine (0.1 micromol/g of body weight) and enumerated liver tumors at 32 weeks of age in males and at 50 weeks in females. Genomic DNA samples from backcross and F2 mice were analyzed for 70 informative simple sequence length polymorphism markers. Genetic markers on chromosome 17 (D17Mit21) and chromosome 1 (D1Mit33) cosegregated with high tumor multiplicity in both sexes. Together, these loci [designated Hcf1 and Hcf2 (Hepatocarcinogenesis in females), respectively] account for virtually all of the difference in sensitivity between BR and B6 mice. The Hcf1 locus accounts for a majority of the higher susceptibility of BR mice of both sexes. Backcross female mice heterozygous at both loci (33 +/- 23 tumors per mouse) and at Hcf1 only (17 +/- 18) were 15- and 8-fold more sensitive, respectively, than mice homozygous for the B6 alleles at Hcf1 and Hcf2 (2.2 +/- 3.9). In backcross male mice, the double heterozygotes (35 +/- 22) and Hcf1 heterozygotes (28 +/- 12) were 5.4- and 4.3-fold more sensitive than mice homozygous for B6 alleles at both loci (6.5 +/- 5.4).
Resumo:
Chédiak-Higashi syndrome in man and the beige mutation of mice are phenotypically similar disorders that have profound effects upon lysosome and melanosome morphology and function. We isolated two murine yeast artificial chromosomes (YACs) that, when introduced into beige mouse fibroblasts, complement the beige mutation. The complementing YACs exist as extrachromosomal elements that are amplified in high concentrations of G418. When YAC-complemented beige cells were fused to human Chédiak-Higashi syndrome or Aleutian mink fibroblasts, complementation of the mutant phenotype also occurred. These results localize the beige gene to a 500-kb interval and demonstrate that the same or homologous genes are defective in mice, minks, and humans.
Resumo:
In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.
Resumo:
Using a 9.4 T MRI instrument, we have obtained images of the mouse brain response to photic stimulation during a period between deep anesthesia and the early stages of arousal. The large image enhancements we observe (often >30%) are consistent with literature results extrapolated to 9.4 T. However, there are also two unusual aspects to our findings. (i) The visual area of the brain responds only to changes in stimulus intensity, suggesting that we directly detect operations of the M visual system pathway. Such a channel has been observed in mice by invasive electrophysiology, and described in detail for primates. (ii) Along with the typical positive response in the area of the occipital portion of the brain containing the visual cortex, another area displays decreased signal intensity upon stimulation.
Resumo:
The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.
Resumo:
Diseases characterized by retinal neovascularization are among the principal causes of visual loss worldwide. The hypoxia-stimulated expression of vascular endothelial growth factor (VEGF) has been implicated in the proliferation of new blood vessels. We have investigated the use of antisense phosphorothioate oligodeoxynucleotides against murine VEGF to inhibit retinal neovascularization and VEGF synthesis in a murine model of proliferative retinopathy. Intravitreal injections of two different antisense phosphorothioate oligodeoxynucleotides prior to the onset of proliferative retinopathy reduced new blood vessel growth a mean of 25 and 31% compared with controls. This inhibition was dependent on the concentration of antisense phosphorothioate oligodeoxynucleotides and resulted in a 40-66% reduction in the level of VEGF protein, as determined by Western blot analysis. Control (sense, nonspecific) phosphorothioate oligodeoxynucleotides did not cause a significant reduction in retinal neovascularization or VEGF protein levels. These data further establish a fundamental role for VEGF expression in ischemia-induced proliferative retinopathies and a potential therapeutic use for antisense phosphorothioate oligodeoxynucleotides.
Resumo:
Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine.
Resumo:
Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation.
Resumo:
We investigated the role of the Salmonella typhimurium fimbrial operon formed by the genes lpfABCDE in infection of mice. A mutant in lpfC, the gene encoding the fimbrial outer membrane usher, had an approximately 5-fold increased 50% lethal dose when administered orally to mice. When mice were infected with a mixture of the lpfC mutant and isogenic wild-type S. typhimurium, the lpfC mutant was recovered in lower numbers from Peyer's patches, mesenteric lymph nodes, liver, and spleen. In an organ culture model using murine intestinal loops, lpfC mutants were shown to be associated in lower numbers than wild-type bacteria with Peyer's patches but not with villous intestine. The defect of the lpfC mutant in adhesion to Peyer's patches could be complemented by introducing lpfABCDE on a cosmid. Similarly, heterologous expression of the Salmonella lpf operon in Escherichia coli resulted in an increased adhesion to histological thin sections of Peyer's patch lymph follicles. Electron microscopic analysis of histological sections taken from Peyer's patches after intragastric infection of mice showed that, in contrast to the S. typhimurium wild type, the isogenic lpfC mutant did not destroy M cells of the follicle-associated epithelium. These data show that the Salmonella lpf operon is involved in adhesion to murine Peyer's patches.
Resumo:
The immunoglobulin kappa gene locus encodes 95% of the light chains of murine antibody molecules and is thought to contain up to 300 variable (V kappa)-region genes generally considered to comprise 20 families. To delineate the locus we have isolated 29 yeast artificial chromosome genomic clones that form two contigs, span > 3.5 megabases, and contain two known non-immunoglobulin kappa markers. Using PCR primers specific for 19 V kappa gene families and Southern analysis, we have refined the genetically defined order of these V kappa gene families. Of these, V kappa 2 maps at least 3.0 Mb from the joining (J kappa) region and appears to be the most distal V kappa gene segment.