967 resultados para multifissicorn antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to reduce truncation errors in near-field antenna measurements is presented. The method is based on the Gerchberg-Papoulis iterative algorithm used to extrapolate band-limited functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. The extension of the valid region is achieved by the iterative application of a transformation between two different domains. After each transformation, a filtering process that is based on known information at each domain is applied. The first domain is the spectral domain in which the plane wave spectrum (PWS) is reliable only within a known region. The second domain is the field distribution over the antenna under test (AUT) plane in which the desired field is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper, only the planar, cylindrical, and partial spherical near-field measurements are considered. Several simulation and measurement examples are presented to verify the effectiveness of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antenna presented in this article will be developed for satellite communications onboard systems based on the recommendations ITU-R S.580-6 and ITU-R S.465-5. The antenna consists of printed elements grouped in an array, this terminal works in a frequency band from 7.25 up to 8.4 GHz (14.7% of bandwidth), where both bands, reception (7.25 - 7.75 GHz) and transmission (7.9 - 8.4 GHz), are included simultaneously. The antenna reaches a gain about 31 dBi, and it has a radiation pattern with a beamwidth smaller than 10° and a dual circular polarization. The antenna has the capability to steer in elevation from 90° to 40° electronically and 360° in azimuth with a motorized junction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GEODA-GRUA is one conformal adaptive antenna array designed for satellite communications. Operating at 1.7 GHz with circular polarization, it is possible to track and communicate with several satellites at once being able to receive signals in full azimuth and within the range of 5° to broadside elevation thanks to its adaptive beam. The complex structure of the antenna array has 2700 radiating elements based on a set of 60 similar triangular arrays that are divided in 15 subarrays of 3 radiating elements. A control module governs each transmission/receiver (T/R) module associated to each cell in order to manage beam steering by shifting phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar antenna is introduced that works as a portable system for X-band satellite communications. This antenna is low-profile and modular with dimensions of 40 × 40 × 2.5 × cm. It is composed of a square array of 144 printed circuit elements that cover a wide bandwidth (14.7%) for transmission and reception along with dual and interchangeable circular polarization. A radiation efficiency above 50% is achieved by a low-loss stripline feeding network. This printed antenna has a 3 dB beamwidth of 5°, a maximum gain of 26 dBi and an axial ratio under 1.9 dB over the entire frequency band. The complete design of the antenna is shown, and the measurements are compared with simulations to reveal very good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antenna which has been conceived as a portable system for satellite communications based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2] for small antennas, i.e., with a diameter lower than 50 wavelengths, is introduced. It is a planar and a compact structure with a size of 40×40×2 cm. The antenna is formed by an array of 256 printed elements covering a large bandwidth (14.7%) at X-Band. The specification includes transmission (Tx) and reception (Rx) bands simultaneously. The printed antenna has a radiation pattern with a 3dB beamwidth of 5°, over a 31dBi gain, and a dual and an interchangeable circular polarization

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antenna which has been conceived as a portable system for satellite communications based on the recommendations ITU-R S.580-6 and ITU-R S.465-5 for small antennas, i.e., with a diameter lower than 50 wavelengths, is introduced. It is a planar and a compact structure with a size of 40×40×2 cm. The antenna is formed by an array of 256 printed elements covering a large bandwidth (14.7%) at X-Band with a VSWR of 1.4:1. The specification includes transmission (Tx) and reception (Rx) bands simultaneously. The printed antenna has a radiation pattern with a 3dB beamwidth of 5°, over a 31dBi gain, and a dual and an interchangeable circular polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One important task in the design of an antenna is to carry out an analysis to find out the characteristics of the antenna that best fulfills the specifications fixed by the application. After that, a prototype is manufactured and the next stage in design process is to check if the radiation pattern differs from the designed one. Besides the radiation pattern, other radiation parameters like directivity, gain, impedance, beamwidth, efficiency, polarization, etc. must be also evaluated. For this purpose, accurate antenna measurement techniques are needed in order to know exactly the actual electromagnetic behavior of the antenna under test. Due to this fact, most of the measurements are performed in anechoic chambers, which are closed areas, normally shielded, covered by electromagnetic absorbing material, that simulate free space propagation conditions, due to the absorption of the radiation absorbing material. Moreover, these facilities can be employed independently of the weather conditions and allow measurements free from interferences. Despite all the advantages of the anechoic chambers, the results obtained both from far-field measurements and near-field measurements are inevitably affected by errors. Thus, the main objective of this Thesis is to propose algorithms to improve the quality of the results obtained in antenna measurements by using post-processing techniques and without requiring additional measurements. First, a deep revision work of the state of the art has been made in order to give a general vision of the possibilities to characterize or to reduce the effects of errors in antenna measurements. Later, new methods to reduce the unwanted effects of four of the most commons errors in antenna measurements are described and theoretical and numerically validated. The basis of all them is the same, to perform a transformation from the measurement surface to another domain where there is enough information to easily remove the contribution of the errors. The four errors analyzed are noise, reflections, truncation errors and leakage and the tools used to suppress them are mainly source reconstruction techniques, spatial and modal filtering and iterative algorithms to extrapolate functions. Therefore, the main idea of all the methods is to modify the classical near-field-to-far-field transformations by including additional steps with which errors can be greatly suppressed. Moreover, the proposed methods are not computationally complex and, because they are applied in post-processing, additional measurements are not required. The noise is the most widely studied error in this Thesis, proposing a total of three alternatives to filter out an important noise contribution before obtaining the far-field pattern. The first one is based on a modal filtering. The second alternative uses a source reconstruction technique to obtain the extreme near-field where it is possible to apply a spatial filtering. The last one is to back-propagate the measured field to a surface with the same geometry than the measurement surface but closer to the AUT and then to apply also a spatial filtering. All the alternatives are analyzed in the three most common near-field systems, including comprehensive noise statistical analyses in order to deduce the signal-to-noise ratio improvement achieved in each case. The method to suppress reflections in antenna measurements is also based on a source reconstruction technique and the main idea is to reconstruct the field over a surface larger than the antenna aperture in order to be able to identify and later suppress the virtual sources related to the reflective waves. The truncation error presents in the results obtained from planar, cylindrical and partial spherical near-field measurements is the third error analyzed in this Thesis. The method to reduce this error is based on an iterative algorithm to extrapolate the reliable region of the far-field pattern from the knowledge of the field distribution on the AUT plane. The proper termination point of this iterative algorithm as well as other critical aspects of the method are also studied. The last part of this work is dedicated to the detection and suppression of the two most common leakage sources in antenna measurements. A first method tries to estimate the leakage bias constant added by the receiver’s quadrature detector to every near-field data and then suppress its effect on the far-field pattern. The second method can be divided into two parts; the first one to find the position of the faulty component that radiates or receives unwanted radiation, making easier its identification within the measurement environment and its later substitution; and the second part of this method is able to computationally remove the leakage effect without requiring the substitution of the faulty component. Resumen Una tarea importante en el diseño de una antena es llevar a cabo un análisis para averiguar las características de la antena que mejor cumple las especificaciones fijadas por la aplicación. Después de esto, se fabrica un prototipo de la antena y el siguiente paso en el proceso de diseño es comprobar si el patrón de radiación difiere del diseñado. Además del patrón de radiación, otros parámetros de radiación como la directividad, la ganancia, impedancia, ancho de haz, eficiencia, polarización, etc. deben ser también evaluados. Para lograr este propósito, se necesitan técnicas de medida de antenas muy precisas con el fin de saber exactamente el comportamiento electromagnético real de la antena bajo prueba. Debido a esto, la mayoría de las medidas se realizan en cámaras anecoicas, que son áreas cerradas, normalmente revestidas, cubiertas con material absorbente electromagnético. Además, estas instalaciones se pueden emplear independientemente de las condiciones climatológicas y permiten realizar medidas libres de interferencias. A pesar de todas las ventajas de las cámaras anecoicas, los resultados obtenidos tanto en medidas en campo lejano como en medidas en campo próximo están inevitablemente afectados por errores. Así, el principal objetivo de esta Tesis es proponer algoritmos para mejorar la calidad de los resultados obtenidos en medida de antenas mediante el uso de técnicas de post-procesado. Primeramente, se ha realizado un profundo trabajo de revisión del estado del arte con el fin de dar una visión general de las posibilidades para caracterizar o reducir los efectos de errores en medida de antenas. Después, se han descrito y validado tanto teórica como numéricamente nuevos métodos para reducir el efecto indeseado de cuatro de los errores más comunes en medida de antenas. La base de todos ellos es la misma, realizar una transformación de la superficie de medida a otro dominio donde hay suficiente información para eliminar fácilmente la contribución de los errores. Los cuatro errores analizados son ruido, reflexiones, errores de truncamiento y leakage y las herramientas usadas para suprimirlos son principalmente técnicas de reconstrucción de fuentes, filtrado espacial y modal y algoritmos iterativos para extrapolar funciones. Por lo tanto, la principal idea de todos los métodos es modificar las transformaciones clásicas de campo cercano a campo lejano incluyendo pasos adicionales con los que los errores pueden ser enormemente suprimidos. Además, los métodos propuestos no son computacionalmente complejos y dado que se aplican en post-procesado, no se necesitan medidas adicionales. El ruido es el error más ampliamente estudiado en esta Tesis, proponiéndose un total de tres alternativas para filtrar una importante contribución de ruido antes de obtener el patrón de campo lejano. La primera está basada en un filtrado modal. La segunda alternativa usa una técnica de reconstrucción de fuentes para obtener el campo sobre el plano de la antena donde es posible aplicar un filtrado espacial. La última es propagar el campo medido a una superficie con la misma geometría que la superficie de medida pero más próxima a la antena y luego aplicar también un filtrado espacial. Todas las alternativas han sido analizadas en los sistemas de campo próximos más comunes, incluyendo detallados análisis estadísticos del ruido con el fin de deducir la mejora de la relación señal a ruido lograda en cada caso. El método para suprimir reflexiones en medida de antenas está también basado en una técnica de reconstrucción de fuentes y la principal idea es reconstruir el campo sobre una superficie mayor que la apertura de la antena con el fin de ser capaces de identificar y después suprimir fuentes virtuales relacionadas con las ondas reflejadas. El error de truncamiento que aparece en los resultados obtenidos a partir de medidas en un plano, cilindro o en la porción de una esfera es el tercer error analizado en esta Tesis. El método para reducir este error está basado en un algoritmo iterativo para extrapolar la región fiable del patrón de campo lejano a partir de información de la distribución del campo sobre el plano de la antena. Además, se ha estudiado el punto apropiado de terminación de este algoritmo iterativo así como otros aspectos críticos del método. La última parte de este trabajo está dedicado a la detección y supresión de dos de las fuentes de leakage más comunes en medida de antenas. El primer método intenta realizar una estimación de la constante de fuga del leakage añadido por el detector en cuadratura del receptor a todos los datos en campo próximo y después suprimir su efecto en el patrón de campo lejano. El segundo método se puede dividir en dos partes; la primera de ellas para encontrar la posición de elementos defectuosos que radian o reciben radiación indeseada, haciendo más fácil su identificación dentro del entorno de medida y su posterior substitución. La segunda parte del método es capaz de eliminar computacionalmente el efector del leakage sin necesidad de la substitución del elemento defectuoso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate characterization of the radio channel in tunnels is of great importance for new signaling and train control communications systems. To model this environment, measurements have been taken at 2.4 GHz in a real environment in Madrid subway. The measurements were carried out with four base station transmitters installed in a 2-km tunnel and using a mobile receiver installed on a standard train. First, with an optimum antenna configuration, all the propagation characteristics of a complex subway environment, including near shadowing, path loss,shadow fading, fast fading, level crossing rate (LCR), and average fade duration (AFD), have been measured and computed. Thereafter, comparisons of propagation characteristics in a double-track tunnel (9.8-m width) and a single-track tunnel (4.8-m width) have been made. Finally, all the measurement results have been shown in a complete table for accurate statistical modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a dual circular polarized steering antenna for satellite communications in X band is presented. The antenna consists of printed elements grouped in an array. This terminal works in a frequency band from 7.25 GHz up to 8.4 GHz (15% of bandwidth), where both bands, reception (RX) and transmission (TX) are included simultaneously and Left Handed Circular Polarization (LHCP) and Right Handed Circular Polarization (RHCP) are interchangeable. The antenna is compact, narrow bandwidth and reaches a gain of 16 dBi. It has the capability to steer in elevation to 45±, 75±, 105± and 135± electronically with a Butler matrix and 360± in azimuth with a motorized junction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different methods to reduce the noise power in the far-field pattern of an antenna as measured in cylindrical near-field (CNF) are proposed. Both methods are based on the same principle: the data recorded in the CNF measurement, assumed to be corrupted by white Gaussian and space-stationary noise, are transformed into a new domain where it is possible to filter out a portion of noise. Those filtered data are then used to calculate a far-field pattern with less noise power than that one obtained from the measured data without applying any filtering. Statistical analyses are carried out to deduce the expressions of the signal-to-noise ratio improvement achieved with each method. Although the idea of the two alternatives is the same, there are important differences between them. The first one applies a modal filtering, requires an oversampling and improves the far-field pattern in all directions. The second method employs a spatial filtering on the antenna plane, does not require oversampling and the far-field pattern is only improved in the forward hemisphere. Several examples are presented using both simulated and measured near-field data to verify the effectiveness of the methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method for evaluating the uncertainty of the performance of active antenna arrays in the whole spatial spectrum is presented. Since array processing algorithms based on spatial reference are widely used to track moving targets, it is essential to be aware of the impact of the uncertainty sources on the antenna response. Furthermore, the estimation of the direction of arrival (DOA) depends on the array uncertainty. The aim of the uncertainties analysis is to provide an exhaustive characterization of the behavior of the active antenna array associated with its main uncertainty sources. The result of this analysis helps to select the proper calibration technique to be implemented. An illustrative example for a triangular antenna array used for satellite tracking is presented showing the suitability of the proposed method to carry out an efficient characterization of an active antenna array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In large antenna arrays with a large number of antenna elements, the required number of measurements for the characterization of the antenna array is very demanding in cost and time. This letter presents a new offline calibration process for active antenna arrays that reduces the number of measurements by subarray-level characterization. This letter embraces measurements, characterization, and calibration as a global procedure assessing about the most adequate calibration technique and computing of compensation matrices. The procedure has been fully validated with measurements of a 45-element triangular panel array designed for Low Earth Orbit (LEO) satellite tracking that compensates the degradation due to gain and phase imbalances and mutual coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CubeSat platforms have become a de facto standard for universities willing to initiate space-technology activities with students. These small satellite platforms ease the implementation of hands-on education projects and opening the apertures of new research areas. Moreover, due to the limited volume (a 10 cm cube) and power (1 W), the application of imaginative solutions is mandatory. This leads to new innovation processes in the course of CubeSat projects. In this paper, we present a hands-on education project the aim of which is the specification, design, building and measurement of an antenna for communication between nanosatellites and, in particular, CubeSats. The project lies within the framework of ETSIT-UPM innovative education activities in the area of space technology, where students play a leading role in real engineering projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of three possible solutions that can be taken into account to control the phase shift between elements in an antenna array. Because commercial digital phase shifters have become a strategic element by U.S. Government, these elements have increased their price. For this reason, it is necessary to adopt some solutions that allow us to deal with the design and construction of antenna arrays.