962 resultados para metals in urine
Resumo:
Background The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
Resumo:
Matrix metalloproteinases (MMP) are a large family of proteinases that remodel extracellular matrix (ECM) component. Recent data suggest a role for MMPs in a number of renal pathophysiologies, associated with an imbalance of ECM syntesis and degradation, which may result in an accumulation of ECM molecules and renal fibrosis. The aim of this study is to elucidate the role of pro and activated MMP-2 and 9 in urine and renal tissue of healty and nephropatic dogs. Renal tissue of 8 healty dogs and either renal tissue and urine of 9 nephropatic dogs was collected and analize using zimographic method, which is been validated in this study. Either MMPs zimographic bands were present in almost all samples. In particular, pro and activated MMP-9 zimographic bands were poorly represent in renal tissue of healty dogs, whereas were very represent in nephropatic dogs. Pro and activated MMP-2 was present in either tissue of healty and nephropatic dogs. In urine of nephropatic dogs, pro and activated MMP-9 was more evident than MMP-2, but there was not correlaction with renal tissue levels, therefore urine levels of MMPs have poorly usefulness in diagnostic pratice. The values of Pro and activated MMP-9 in nephropatic dogs were significantly higher compared with normal dogs (p < 0,05), whereas there was not statistically meaningful for Pro and activated MMP-2. In conclusion, in this study we have validated a zimographic method for renal tissue of dogs and we have illustrated the changes in nephropatic dogs, which may be useful for further study.
Resumo:
n this work, three Cypraea species (C. talpa, C. tigris and C. zebra) were exhaustively studied. The shells have been separated in the structural layers. The mineralogy, ultra- and micro-structure of each layer were analyzed by Confocal Laser Scanning Microscopy (CLSM), Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Raman Spectroscopy (RS). The presence of biologically relevant trace metals (Mn, Co, Fe, Zn, Cr, etc.) has been investigated using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) as detection tool. A new method has been developed and optimized to extract and analyze the soluble organic matrix (SOM) of the shell. Although the molecular nature of the SOM is not really known, it contains at least large protein fraction, if not only consists of proteins. The extracted matrices were compared between layers and species using Size Exclusion High Performance Liquid Chromatography coupled with Ultra Violet Spectrometry (SE-HPLC-UV), Gel electrophoresis (GE) and protein quantification tests. For the first time to our knowledge the association of trace elements to the protein in the SOM of the shell was studied using hyphenated on line as well as combined off line techniques and validated through inter-comparison tests between the different methods applied. Interesting correlations between the trace element concentration, the microstructure and the protein content were directly and indirectly detected. The metals Cu, Ni, Co and Zn have shown to bind to the SOM extracted from C. talpa, C. tigris and C. zebra shells. Within the conclusions of this work it was demonstrated that these protein-metal-complexes (or metal containing proteins) change from one layer to the other and are different between the three snails analyzed. In addition, the complexes are clearly related only to certain protein fractions of the SOM, and not to the whole SOM observed. These fractions and show not to be very metal-specific (i.e. some of these fractions bind two or three different metals).
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
Copper and Zn are essential micronutrients for plants, animals, and humans; however, they may also be pollutants if they occur at high concentrations in soil. Therefore, knowledge of Cu and Zn cycling in soils is required both for guaranteeing proper nutrition and to control possible risks arising from pollution.rnThe overall objective of my study was to test if Cu and Zn stable isotope ratios can be used to investigate into the biogeochemistry, source and transport of these metals in soils. The use of stable isotope ratios might be especially suitable to trace long-term processes occurring during soil genesis and transport of pollutants through the soil. In detail, I aimed to answer the questions, whether (1) Cu stable isotopes are fractionated during complexation with humic acid, (2) 65Cu values can be a tracer for soil genetic processes in redoximorphic soils (3) 65Cu values can help to understand soil genetic processes under oxic weathering conditions, and (4) 65Cu and 66Zn values can act as tracers of sources and transport of Cu and Zn in polluted soils.rnTo answer these questions, I ran adsorption experiments at different pH values in the laboratory and modelled Cu adsorption to humic acid. Furthermore, eight soils were sampled representing different redox and weathering regimes of which two were influenced by stagnic water, two by groundwater, two by oxic weathering (Cambisols), and two by podzolation. In all horizons of these soils, I determined selected basic soil properties, partitioned Cu into seven operationally defined fractions and determined Cu concentrations and Cu isotope ratios (65Cu values). Finally, three additional soils were sampled along a deposition gradient at different distances to a Cu smelter in Slovakia and analyzed together with bedrock and waste material from the smelter for selected basic soil properties, Cu and Zn concentrations and 65Cu and 66Zn values.rnMy results demonstrated that (1) Copper was fractionated during adsorption on humic acid resulting in an isotope fractionation between the immobilized humic acid and the solution (65CuIHA-solution) of 0.26 ± 0.11‰ (2SD) and that the extent of fractionation was independent of pH and involved functional groups of the humic acid. (2) Soil genesis and plant cycling causes measurable Cu isotope fractionation in hydromorphic soils. The results suggested that an increasing number of redox cycles depleted 63Cu with increasing depth resulting in heavier 65Cu values. (3) Organic horizons usually had isotopically lighter Cu than mineral soils presumably because of the preferred uptake and recycling of 63Cu by plants. (4) In a strongly developed Podzol, eluviation zones had lighter and illuviation zones heavier 65Cu values because of the higher stability of organo-65Cu complexes compared to organo-63Cu complexes. In the Cambisols and a little developed Podzol, oxic weathering caused increasingly lighter 65Cu values with increasing depth, resulting in the opposite depth trend as in redoximorphic soils, because of the preferential vertical transport of 63Cu. (5) The 66Zn values were fractionated during the smelting process and isotopically light Zn was emitted allowing source identification of Zn pollution while 65Cu values were unaffected by the smelting and Cu emissions isotopically indistinguishable from soil. The 65Cu values in polluted soils became lighter down to a depth of 0.4 m indicating isotope fractionation during transport and a transport depth of 0.4 m in 60 years. 66Zn values had an opposite depth trend becoming heavier with depth because of fractionation by plant cycling, speciation changes, and mixing of native and smelter-derived Zn. rnCopper showed measurable isotope fractionation of approximately 1‰ in unpolluted soils, allowing to draw conclusions on plant cycling, transport, and redox processes occurring during soil genesis and 65Cu and 66Zn values in contaminated soils allow for conclusions on sources (in my study only possible for Zn), biogeochemical behavior, and depth of dislocation of Cu and Zn pollution in soil. I conclude that stable Cu and Zn isotope ratios are a suitable novel tool to trace long-term processes in soils which are difficult to assess otherwise.rn
Resumo:
In order to reduce the costs of crystalline silicon solar cells, low-cost silicon materials like upgraded metallurgical grade (UMG) silicon are investigated for the application in the photovoltaic (PV) industry. Conventional high-purity silicon is made by cost-intensive methods, based on the so-called Siemens process, which uses the reaction to form chlorosilanes and subsequent several distillation steps before the deposition of high-purity silicon on slim high-purity silicon rods. UMG silicon in contrast is gained from metallurgical silicon by a rather inexpensive physicochemical purification (e.g., acid leaching and/or segregation). However, this type of silicon usually contains much higher concentrations of impurities, especially 3d transition metals like Ti, Fe, and Cu. These metals are extremely detrimental in the electrically active part of silicon solar cells, as they form recombination centers for charge carriers in the silicon band gap. This is why simple purification techniques like gettering, which can be applied between or during solar cell process steps, will play an important role for such low-cost silicon materials. Gettering in general describes a process, whereby impurities are moved to a place or turned into a state, where they are less detrimental to the solar cell. Hydrogen chloride (HCl) gas gettering in particular is a promising simple and cheap gettering technique, which is based on the reaction of HCl gas with transition metals to form volatile metal chloride species at high temperatures.rnThe aim of this thesis was to find the optimum process parameters for HCl gas gettering of 3d transition metals in low-cost silicon to improve the cell efficiency of solar cells for two different cell concepts, the standard wafer cell concept and the epitaxial wafer equivalent (EpiWE) cell concept. Whereas the former is based on a wafer which is the electrically active part of the solar cell, the latter uses an electrically inactive low-cost silicon substrate with an active layer of epitaxially grown silicon on top. Low-cost silicon materials with different impurity grades were used for HCl gas gettering experiments with the variation of process parameters like the temperature, the gettering time, and the HCl gas concentration. Subsequently, the multicrystalline silicon neighboring wafers with and without gettering were compared by element analysis techniques like neutron activation analysis (NAA). It was demonstrated that HCl gas gettering is an effective purification technique for silicon wafers, which is able to reduce some 3d transition metal concentrations by over 90%. Solar cells were processed for both concepts which could demonstrate a significant increase of the solar cell efficiency by HCl gas gettering. The efficiency of EpiWE cells could be increased by HCl gas gettering by approximately 25% relative to cells without gettering. First process simulations were performed based on a simple model for HCl gas gettering processes, which could be used to make qualitative predictions.
Resumo:
Übergangsmetallen wie Nickel und Cobalt kommt meist eine große Bedeutung als Cofaktor in Enzymen oder Metallkomplexen im Metabolismus von Lebewesen zu. Da eine sehr geringe Konzentration dieser Übergangsmetalle in einer Zelle für deren Funktionalität ausreicht, ist eine konstante Konzentration der Spurenelemente in einer Zelle angestrebt. Durch meist anthropogene Einflüsse sind Pflanzen und Menschen zunehmend hohen Konzentrationen von Übergangsmetallen ausgesetzt, die in Abhängigkeit von ihrer Spezies, der Konzentration und der Lokalisation unterschiedliche Toxizitäten aufweisen können. Die Speziation von Metallen wurde bisher mittels gängiger Analyseverfahren, wie der ICP-MS und ähnlicher Verfahren, anhand von bulk-Material durchgeführt. Durch die Entwicklung von optischen Sensoren für Metallionen war es möglich, diese Metalle auch in lebenden Zellen mittels Fluoreszenzmikroskopie zu lokalisieren. Ke und Kollegen (2006, 2007) nutzten einen solchen optischen Sensor - Newport Green DCF, um die Aufnahme von Nickel in humane A543 Lungenbronchialepithelzellen nach Inkubation mit dem wasserlöslichen NiCl2 (0,5 mM und 1 mM) sowie den wasserunlöslichen Verbindungen Ni3S2 (0,5 µg/cm2 und 1 µg/cm2) und NiS (2,5 µg/cm2) nachzuweisen und zu lokalisieren und konnten damit eine Akkumulation von Nickel im Zytoplasma und im Zellkern aufzeigen. Dabei war bei wasserlöslichen und wasserunlöslichen Nickelverbindungen Nickel nach 24 h im Zytoplasma und erst nach 48 h im Zellkern zu beobachten.rnrnDa Nickel und Cobalt keine detektierbare Eigenfluoreszenz unter den gegebenen Bedingungen zeigten, wurde für den optischen Nachweis von Nickel und Cobalt mit dem konfokalen Laser-Raster Mikroskop (CLSM) nach der Zugabe der verschiedenen wasserlöslichen und wasserunlöslichen Metallverbindungen NiCl2, NiSO4, Ni3S2 und CoCl2 in einzelnen lebenden humanen Gingiva-Fibroblasten, sowie in Pflanzenzellen in dieser Arbeit ebenfalls der optische Sensor Newport Green DCF genutzt. Korrespondierend zu den Ergebnissen früherer Arbeiten von Ke et al. (2006, 2007), in denen die Nickelaufnahme bei Konzentrationen von >0,5 mM NiCl2 bzw. >0,5 µg/cm2 Ni3S2 gezeigt wurde, wurde Nickel in Fibroblasten in Abhängigkeit von der Spezies mit steigender Metallkonzentration von 100 µM bis 500 µM nach 16 h im Zytoplasma und zunehmend nach 24 h bis 48 h im Zellkern detektiert. Bei der wasserunlöslichen Verbindung Ni3S2 war der Nachweis von Nickel im Zellkern bereits nach 16 h bis 24 h erfolgreich. Zusätzlich wurden weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien und die Nukleoli durch eine starke Fluoreszenz des optischen Sensors bei Colokalisationsexperimenten mit Organell-spezifischen Fluoreszenzfarbstoffen als target für die Nickelbindung vermutet. Die Lokalisation von Cobalt in den Fibroblasten entsprach weitgehend der Lokalisation von Nickel. Im Zellkern war die Cobaltlokalisation jedoch auf die Nukleoli beschränkt. Weiterführende Versuche an humanen Gingiva-Fibroblasten zeigten, dass die Aufnahme der Metalle in die Fibroblasten pH-Wert abhängig war. Niedrige pH-Werte im sauren pH-Bereich verringerten die Aufnahme der Metalle in die Zellen, wobei ein pH-Wert im basischen Bereich keinen bedeutenden Unterschied zum neutralen pH-Bereich aufwies. Im Vergleich zu den Fibroblasten war in Pflanzenzellen zu jedem Zeitpunkt, auch bei geringen Konzentrationen der Metallverbindungen sowie des optischen Sensors, Nickel und Cobalt in den Zellkernen detektierbar. Durch die Eigenschaft der Pflanzenzellen eine Vakuole zu besitzen, war Nickel und Cobalt hauptsächlich in den Vakuolen lokalisiert. Weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien oder auch die Zellwand kamen bei Pflanzenzellen als target in Frage.rnrnDie Fluoreszenz und Lokalisation der Metalle in den Fibroblasten waren unabhängig von der Spezies sehr ähnlich, sodass in den Zellen die Spezies anhand der fluoreszenzmikroskopischen Aufnahmen kaum unterschieden werden konnten. Lambda-Scans in verschiedenen regions of interest (ROI) wurden durchgeführt, um durch die Fluoreszenzspektren Hinweise auf eine charakteristische Beeinflussung der Bindungspartner von Nickel und Cobalt oder dieser Metalle selbst in den Zellen auf den optischen Sensor zu bekommen und diese dadurch identifizieren zu können. Das Ziel der parallelen Detektion bzw. Lokalisation und gleichzeitigen Speziation bestimmter Nickel- und Cobaltpezies in einzelnen lebenden Zellen konnte in dieser Arbeit durch den optischen Sensor Newport Green DCF nicht erreicht werden.
Resumo:
Die medikamentöse Standardtherapie entzündlich-rheumatischer Erkrankungen wie der rheumatoider Arthritis (RA) und des systemischen Lupus erythematodes (SLE) sind oft unzureichend und erlauben keine nebenwirkungsarme beziehungsweise -freie Behandlung. Daher ist es von großem Interesse für diese Indikationsgebiete, wirkungsvolle Substanzen zu entwickeln, die für eine Langzeittherapie geeignet sind. Naturstoffe wie Oxacyclododecindion (Oxa) können dabei als mögliche Leitstruktur dienen. Oxa wurde bereits in in-vitro Untersuchungen als ein potenter Inhibitor der Expression von proinflammatorischen und profibrotischen Genen identifiziert. rnZiel dieser Arbeit war es in in-vivo Modellen der RA und des SLEs das therapeutische Potential des Naturstoffes Oxa aufzuklären. Da eine Etablierung der Kollagen-induzierten Arthritis im untersuchten murinen RA-Modell, dem HLA-DR4.AE° Stamm, nicht möglich war, wurden die Untersuchungen ausschließlich im MRL Faslpr Mausstamm, einem anerkannten SLE-Modell durchgeführt. MRL Faslpr Mäuse entwickeln wie SLE-Patienten unter anderem eine schwerwiegende Glomerulonephritis. rnIn den Nieren weiblicher MRL Faslpr Mäuse konnte die Oxa-Behandlung die Expression zahlreicher proinflammatorischer Mediatoren beeinflussen, die in Zusammenhang mit der Pathogenese des humanen SLE gebracht werden. So reduziert der Naturstoff die Expression von Zytokinen wie TNFα, IFNγ und IL6 als auch Chemokinen wie CCL2, CSF-1 und RANTES auf mRNA- und Proteinebene. Dabei war die Wirkung von Oxa in den in-vivo Analysen ähnlich gut wie die des potenten Glukokortikoids Dexamethason. Die Reduktion chemotaktischer Moleküle durch die Oxa-Behandlung führte nachweislich zu einer reduzierten Akkumulation von Immunzellen. Die anti-inflammatorischen und immunmodulatorischen Effekte von Oxa waren so ausgeprägt, dass klinisch-pathologische Marker der Glomerulonephritis, wie die Ablagerung von Immunkomplexen, die vermehrte Bildung von Kollagenfasern und die Ausscheidung von Proteinen im Urin gemildert wurden. Weiterführende Untersuchungen im SLE Modell konnten neue Zielmoleküle von Oxa identifizieren, wie KIM1 und zahlreiche SLE-assoziierte microRNAs (miR 19a, 29c und 369). Diese Befunde legen nahe, dass Oxa eine vielversprechende anti-entzündliche und -fibrotische Verbindung darstellt. rnDie Entschlüsselung des Wirkmechanismus von Oxa steht erst am Anfang. Die Analysen im Rahmen dieser Arbeit zeigten jedoch, dass Oxa einen Einfluss auf die Phosphorylierung und somit Aktivierung der p38 MAPK sowie auf die mRNA-Stabilität von proinflammatorischen Zytokinen wie TNFα zu haben scheint.rn
Resumo:
Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.
Resumo:
In abstinence maintenance programs, for reissuing the driving licence and in workplace monitoring programs abstinence from ethanol and its proof are demanded. Various monitoring programs that mainly use ethyl glucuronide (EtG) as alcohol consumption marker have been established. To abstain from ethanol, but not from the taste of alcoholic beverages, in particular non-alcoholic beer has become more and more popular. In Germany, these "alcohol-free" beverages may still have an ethanol content of up to 0.5vol.% without the duty of declaration. Due to severe negative consequences resulting from positive EtG tests, a drinking experiment with 2.5L of non-alcoholic beer per person was performed to address the question of measurable concentrations of the direct metabolites EtG and EtS (ethyl sulphate) in urine and blood. Both alcohol consumption markers - determined by LC-MS/MS - were found in high concentrations: maximum concentrations in urine found in three volunteers were EtG 0.30-0.87mg/L and EtS 0.04-0.07mg/L, i.e., above the often applied cut-off value for the proof of abstinence of 0.1mg EtG/L. In the urine samples of one further volunteer, EtG and EtS concentrations cumulated over-night and reached up to 14.1mg/L EtG and 16.1mg/L EtS in the next morning's urine. Ethanol concentrations in blood and urine samples were negative (determined by HS-GC-FID and by an ADH-based method).
Resumo:
To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices.
Resumo:
ThioTEPA, an alkylating agent with anti-tumor activity, has been used as an effective anticancer drug since the 1950s. However, a complete understanding of how its alkylating activity relates to clinical efficacy has not been achieved, the total urinary excretion of thioTEPA and its metabolites is not resolved, and the mechanism of formation of the potentially toxic metabolites S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA) remains unclear. In this study, the metabolism of thioTEPA in a mouse model was comprehensively investigated using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based-metabolomics. The nine metabolites identified in mouse urine suggest that thioTEPA underwent ring-opening, N-dechloroethylation, and conjugation reactions in vivo. SCMC and TDGA, two downstream thioTEPA metabolites, were produced from thioTEPA from two novel metabolites 1,2,3-trichloroTEPA (VII) and dechloroethyltrichloroTEPA (VIII). SCMC and TDGA excretion were increased about 4-fold and 2-fold, respectively, in urine following the thioTEPA treatment. The main mouse metabolites of thioTEPA in vivo were TEPA (II), monochloroTEPA (III) and thioTEPA-mercapturate (IV). In addition, five thioTEPA metabolites were detected in serum and all shared similar disposition. Although thioTEPA has a unique chemical structure which is not maintained in the majority of its metabolites, metabolomic analysis of its biotransformation greatly contributed to the investigation of thioTEPA metabolism in vivo, and provides useful information to understand comprehensively the pharmacological activity and potential toxicity of thioTEPA in the clinic.
Resumo:
CE-ESI multistage IT-MS (CE-MS(n), n < or = 4) and computer simulation of fragmentation are demonstrated to be effective tools to detect and identify phase I and phase II metabolites of hydromorphone (HMOR) in human urine. Using the same CE conditions as previously developed for the analysis of urinary oxycodone and its metabolites, HMOR and its phase I metabolites produced by N-demethylation, 6-keto-reduction and N-oxidation and phase II conjugates of HMOR and its metabolites formed with glucuronic acid, glucose, and sulfuric acid could be detected in urine samples of a patient that were collected during a pharmacotherapy episode with daily ingestion of 48 mg of HMOR chloride. The CE-MS(n) data obtained with the HMOR standard, synthesized hydromorphol and hydromorphone-N-oxide, and CYP3A4 in vitro produced norhydromorphone were employed to identify the metabolites. This approach led to the identification of previously unknown HMOR metabolites, including HMOR-3O-glucide and various N-oxides, structures for which no standard compounds or mass spectra library data were available. Furthermore, the separation of alpha- and beta-hydromorphol, the stereoisomers of 6-keto-reduced HMOR, was achieved by CE in the presence of the single isomer heptakis(2,3-diacetyl-6-sulfato)-beta-CD. The obtained data indicate that the urinary excretion of alpha-hydromorphol is larger than that of beta-hydromorphol.
Resumo:
AIM of this study was the assessment of the radiation exposure from preparation and application of (90)Y-Zevalin, the measurement of the dose rate at the patient, the exposure of family members as well as the determination of the activity concentration in urine of patients. METHODS: Overall data from 31 therapeutic administrations carried out in four institutions were evaluated. During preparation and application of (90)Y-Zevalin the finger exposures of radiochemists, technicians, and physicians were measured. The dose rate of the patient was measured immediately after radioimmunotherapy. In patients treated in a nuclear medicine therapy unit, urine was collected over a two day period and the corresponding activity was determined. Family members of outpatients were asked to wear a dosimeter over a seven day period. RESULTS: During the preparation we found a maximum skin dose of 6 mSv at the average, and during application of 3 mSv, respectively. After administration of (90)Y the dose rate was 0.4 +/- 0.1 microSv/h at 2 m distance. Urine measurements yielded a cumulated 24 h excretion of 3.9 +/- 1.4% and 4.4 +/- 1.4% within 48 h, respectively, that is equivalent to 43 +/- 18 and 50 +/- 20 MBq of (90)Y, respectively. Family members received a radiation exposure of 40 +/- 14 microSv over seven days. CONCLUSION: During preparation and application of (90)Y-Zevalin appropriate radiation shielding is necessary. For family members as well as nursing staff no additional special radiation protection measures beyond those being common for other nuclear medicine procedures are necessary.
Resumo:
Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.