953 resultados para mesoporous MCM-41
Resumo:
Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.
Resumo:
The synthesis and characterization of the mesoporous materials FSM-16 (folded sheets mesoporous materials) with highly ordered structure in open-vessel by using cetylpyridium bromide (CPBr) and the single-layered polysilica Kanemite as new template and silicon source, respectively, has been investigated systematically. The hexagonal arrangements of uniformly size pores were characterized by FTIR. XRD. nitrogen adsorption. TG-DTA. SEM and TEM. Especially, the porous products with higher surface areas show remarkable thermal stability up to 1000 C. The potential application as carrier of catalysts or host-guest materials is anticipated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Various carbonaceous deposits are formed during the course of methane dehydro-aromatization (MDA) under non-oxidative conditions on Mo/MCM-22 catalysts. These carbon species were investigated by various temperature-programmed techniques such as TPH and TPCO2, combining with TPO and TGA results in order to reveal their chemical nature and determine their amounts. The TPO profiles recorded from coked Mo/MCM-22 catalysts show two temperature peaks: one at about 756 K and the other at about 876 K. The coke amounts related to these two peaks were determined on the basis of the corresponding corrected and deconvoluted TPO profiles, combining with the TGA profiles concerned.
Resumo:
Ammonia adsorption studies reveal that the observed Lewis acidity in the zeolite MCM-22 is derived from at least two types of framework aluminum sites (Al(F)), that is, octahedral Al(F) and three-coordinate Al(F). Comparative ammonia or trimethylphosphine (TMP) adsorption experiments with MCM-22 confirm that octahedral Al species gives rise to the signal at delta(ISO) approximate to 0 in the (27)Al NMR spectrum; this is a superposition of two NMR signals from the different Al species on the water-re constructed zeolite surface. A sharp resonance assigned to framework Al reversibly transforms on ammonia adsorption to delta(ISO) (27)Al approximate to 55 from tetrahedral Al(F), while the broad peak is assigned to nonframework aluminium which results from hydrothermal treatment. This study also demonstrates the effectiveness of (27)Al magic angle spinning (MAS) and multiple quantum (MQ) MAS NMR spectroscopy as a technique for the study of zeolite reactions.
Resumo:
A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described. The obtained materials of MAS-5 are hydrothermally stable, which is shown by X-ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS-5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non-framework aluminium species in the samples was observed.
Resumo:
Ti-substituted mesoporous SBA-15 (Ti-SBA-15) materials have been synthesized by using a new approach in which the hydrolysis of the silicon precursor (tetramethoxysilane, TMOS) is accelerated by fluoride. These materials were characterized by powder X-ray diffraction patterns (XRD), X-ray fluorescence spectroscopy (Y-RF), N-2 sorption isotherms, diffuse-reflectance UV-visible (UV-vis) and UV-Raman spectroscopy, Si-29 MAS NMR, and the catalytic epoxidation reaction of styrene. Experiments show that Ti-SBA-15 samples of high quality can be obtained under the following conditions: F/Si greater than or equal to 0.03 (molar ratio), pH less than or equal to 1.0, aging temperature less than or equal to 80 degreesC, and Ti/Si less than or equal to 0.01. It was found that the hydrolysis rate of TMOS was remarkably accelerated by fluoride, which was suggested to play the main role in the formation of Ti-SBA-15 materials of high quality. There is no stoichiometric incorporation of Ti, and the Ti contents that are obtained are quite low in the case of the approach that is proposed. The calcined Ti-SBA-15 materials show highly catalytic activity in the epoxidation of styrene.