945 resultados para mean field independent component analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To disentangle the effects of environmental and geographical processes driving phylogenetic distances among clades of maritime pine (Pinus pinaster). To assess the implications for conservation management of combining molecular information with species distribution models (SDMs; which predict species distribution based on known occurrence records and on environmental variables). Location Western Mediterranean Basin and European Atlantic coast. Methods We undertook two cluster analyses for eight genetically defined pine clades based on climatic niche and genetic similarities. We assessed niche similarity by means of a principal component analysis and Schoener's D metric. To calculate genetic similarity, we used the unweighted pair group method with arithmetic mean based on Nei's distance using 266 single nucleotide polymorphisms. We then assessed the contribution of environmental and geographical distances to phylogenetic distance by means of Mantel regression with variance partitioning. Finally, we compared the projection obtained from SDMs fitted from the species level (SDMsp) and composed from the eight clade-level models (SDMcm). Results Genetically and environmentally defined clusters were identical. Environmental and geographical distances explained 12.6% of the phylogenetic distance variation and, overall, geographical and environmental overlap among clades was low. Large differences were detected between SDMsp and SDMcm (57.75% of disagreement in the areas predicted as suitable). Main conclusions The genetic structure within the maritime pine subspecies complex is primarily a consequence of its demographic history, as seen by the high proportion of unexplained variation in phylogenetic distances. Nevertheless, our results highlight the contribution of local environmental adaptation in shaping the lower-order, phylogeographical distribution patterns and spatial genetic structure of maritime pine: (1) genetically and environmentally defined clusters are consistent, and (2) environment, rather than geography, explained a higher proportion of variation in phylogenetic distance. SDMs, key tools in conservation management, better characterize the fundamental niche of the species when they include molecular information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyzes sunshine duration variability in the western part of Europe (WEU) over the 1938– 2004 period. A principal component analysis is applied to cluster the original series from 79 sites into 6 regions, and then annual and seasonal mean series are constructed on regional and also for the whole WEU scales. Over the entire period studied here, the linear trend of annual sunshine duration is found to be nonsignificant. However, annual sunshine duration shows an overall decrease since the 1950s until the early 1980s, followed by a subsequent recovery during the last two decades. This behavior is in good agreement with the dimming and brightening phenomena described in previous literature. From the seasonal analysis, the most remarkable result is the similarity between spring and annual series, although the spring series has a negative trend; and the clear significant increase found for the whole WEU winter series, being especially large since the 1970s. The behavior of the major synoptic patterns for two seasons is investigated, resulting in some indications that sunshine duration evolution may be partially explained by changes in the frequency of some of them

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a catalogue of synoptic patterns of torrential rainfall in northeast of the Iberian Peninsula (IP). These circulation patterns were obtained by applying a T-mode Principal Component Analysis (PCA) to a daily data grid (NCEP/NCAR reanalysis) at sea level pressure (SLP). The analysis made use of 304 days which recorded >100 mm in one or more stations in provinces of Barcelona, Girona and Tarragona (coastland area of Catalonia) throughout the 1950-2005 period. The catalogue comprises 7 circulation patterns showing a great variety of atmospheric conditions and seasonal or monthly distribution. Likewise, we computed the mean index value of the Western Mediterranean Oscillation index (WeMOi) for the synoptic patterns obtained by averaging all days grouped in each pattern. The results showed a clear association between the negative values of this teleconnection index and torrential rainfall in northeast of the IP. We therefore put forward the WeMO as an essential tool for forecasting heavy rainfall in northeast of Spain

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using LC/ESI-MS/MS for the quantitative analysis of Ochratoxin A in roasted coffee was described. Linearity was demonstrated (r = 0.9175). The limits of detection and quantification were 1.0 and 3.0 ng g-1, respectively. Trueness, repeatability and intermediate precision values were 89.0-108.8%; 2.4-13.7%; 12.5-17.8%, respectively. To the best of our knowledge, this is the first report in which Ochratoxin A in roasted coffee is analysed by LC/ESI-MS/MS, contributing to the field of mycotoxin analysis, and it will be used for future production of Certified Reference Material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting) and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA) is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for the analysis in herbal medicines using a photo diode array detector. This method has been applied for quantification of epicatechin in commercialized herbal medicines sold as espinheira-santa in Brazil and in the standard sample of M. ilicifolia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of spatial variability of soil and plants attributes, or precision agriculture, a technique that aims the rational use of natural resources, is expanding commercially in Brazil. Nevertheless, there is a lack of mathematical analysis that supports the correlation of these independent variables and their interactions with the productivity, identifying scientific standards technologically applicable. The aim of this study was to identify patterns of soil variability according to the eleven physical and seven chemical indicators in an agricultural area. It was used two multivariate techniques: the hierarchical cluster analysis (HCA) and the principal component analysis (PCA). According to the HCA, the area was divided into five management zones: zone 1 with 2.87ha, zone 2 with 0.8ha, zone 3 with 1.84ha, zone 4 with 1.33ha and zone 5 with 2.76ha. By the PCA, it was identified the most important variables within each zone: V% for the zone 1, CTC in the zone 2, levels of H+Al in the zone 4 and sand content and altitude in the zone 5. The zone 3 was classified as an intermediate zone with characteristics of all others. According to the results it is concluded that it is possible to separate into groups (management zones) samples with the same patterns of variability by the multivariate statistical techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of pre-slaughter handling on the occurrence of PSE (Pale, Soft, and Exudative) meat in swine slaughtered at a commercial slaughterhouse located in the metropolitan region of Dourados, Mato Grosso do Sul, Brazil. Based on the database (n=1,832 carcasses), it was possible to apply the integrated multivariate analysis for the purpose of identifying, among the selected variables, those of greatest relevance to this study. Results of the Principal Component Analysis showed that the first five components explained 89.28% of total variance. In the Factor Analysis, the first factor represented the thermal stress and fatiguing conditions for swine during pre-slaughter handling. In general, this study indicated the importance of the pre-slaughter handling stages, evidencing those of greatest stress and threat to animal welfare and pork quality, which are transport time, resting period, lairage time before unloading, unloading time, and ambience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to investigate the psychometric properties and cross-cultural validity of the Beck Depression Inventory (BDI) among ethnic Chinese living in the city of São Paulo, Brazil. The study was conducted on 208 community individuals. Reliability and discriminant analysis were used to test the psychometric properties and validity of the BDI. Principal component analysis was performed to assess the BDI's factor structure for the total sample and by gender. The mean BDI score was lower (6.74, SD = 5.98) than observed in Western counterparts and showed no gender difference, good internal consistency (Cronbach's alpha 0.82), and high discrimination of depressive symptoms (75-100%). Factor analysis extracted two factors for the total sample and each gender: cognitive-affective dimension and somatic dimension. We conclude that depressive symptoms can be reliably assessed by the BDI in the Brazilian Chinese population, with a validity comparable to that for international studies. Indeed, cultural and measurement biases might have influenced the response of Chinese subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous assessment of verticality by means of rod and rod and frame tests indicated that human subjects can be more (field dependent) or less (field independent) influenced by a frame placed around a tilted rod. In the present study we propose a new approach to these tests. The judgment of visual verticality (rod test) was evaluated in 50 young subjects (28 males, ranging in age from 20 to 27 years) by randomly projecting a luminous rod tilted between -18 and +18° (negative values indicating left tilts) onto a tangent screen. In the rod and frame test the rod was displayed within a luminous fixed frame tilted at +18 or -18°. Subjects were instructed to verbally indicate the rod’s inclination direction (forced choice). Visual dependency was estimated by means of a Visual Index calculated from rod and rod and frame test values. Based on this index, volunteers were classified as field dependent, intermediate and field independent. A fourth category was created within the field-independent subjects for whom the amount of correct guesses in the rod and frame test exceeded that of the rod test, thus indicating improved performance when a surrounding frame was present. In conclusion, the combined use of subjective visual vertical and the rod and frame test provides a specific and reliable form of evaluation of verticality in healthy subjects and might be of use to probe changes in brain function after central or peripheral lesions.