996 resultados para meal size
Resumo:
Arrays of nanomagnets were fabricated out of Ni80Fe14Mo5 in the lateral size range 500-30nm and the thickness range 3-20nm. Elliptical, triangular, square, pentagonal and circular geometries were all considered. The magnetic properties of these nanomagnets were probed rapidly and non-invasively using a high sensitivity magneto-optical method.
Resumo:
Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.
Resumo:
A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
Resumo:
The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.
Fracture Mechanisms And Size Effects Of Brittle Metallic Foams: In Situ Compression Tests Inside Sem
Resumo:
In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An analytical model for thermal conductivity of composites with nanoparticles in a matrix is developed based on the effective medium theory by introducing the intrinsic size effect of thermal conductivity of nanoparticles and the interface thermal resistance effect between two phases. The model predicts the percolation of thermal conductivity with the volume fraction change of the second phase, and the percolation threshold depends on the size and the shape of the nanoparticles. The theoretical predictions are in agreement with the experimental results.
Resumo:
A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.
Resumo:
An analytical model for size-dependent interface phonon transmission and thermal conductivity of nanolaminates is derived based on the improved acoustic mismatch theory and the Lindemann melting theory by considering the size effect of phonon velocity and the interface lattice mismatch effect. The model suggests that the interface phonon transmission is dominant for the cross-plane thermal conductivity of nanolaminates and superlattices, and the intrinsic variety of size effect of thermal conductivity for different systems is proposed based on the competition mechanism of size effect of phonon transport between two materials constituting the interfaces. The model's prediction for thermal conductivity of nanolaminates agrees with the experimental results. (C) 2008 American Institute of Physics.
Resumo:
The melting process of nickel nanowires are simulated by using molecular dynamics with the quantum Sutten-Chen many-body force field. The wires studied were approximately cylindrical in cross-section and periodic boundary conditions were applied along their length; the atoms were arranged initially in a face-centred cubic structure with the [0 0 1] direction parallel to the long axis of the wire. The size effects of the nanowires on the melting temperatures are investigated. We find that for the nanoscale regime, the melting temperatures of Ni nanowires are much lower than that of the bulk and are linear with the reciprocal of the diameter of the nanowire. When a nanowire is heated up above the melting temperature, the neck of the nanowire begins to arise and the diameter of neck decreases rapidly with the equilibrated running time. Finally, the breaking of nanowire arises, which leads to the formation of the spherical clusters. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The stress-strain relations of nanocrystalline twin copper with variously sized grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). A model of twin lamellae strengthening zone is proposed and a cohesive interface model is used to simulate grain-boundary sliding and separation. Effects of material parameters on stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distribution of twin lamellae has a significant influence on the overall mechanical properties, and the effect is reduced as both the grain size and twin lamellar spacing decrease. Finally, the FEM prediction results are compared with the experimental data.
Resumo:
A theoretical model is presented to investigate the size-dependent bending elastic properties of a nanobeam with the influence of the surface relaxation and the surface tension taken into consideration. The surface layer and its thickness of a nanostructure are defined unambiguously. A three-dimensional (3D) crystal model for a nanofilm with n layers of relaxed atoms is investigated. The four nonzero elastic constants of the nanofilm are derived, and then the Young's modulus for simple tension is obtained. Using the relation of energy equilibrium, the size-dependent effective elastic modulus and effective flexural rigidity of a nanobeam with two kinds of cross sections are derived, and their dependence on the surface relaxation and the surface tension is analysed.
Resumo:
The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.