555 resultados para mathematics computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article engages with the claims of Anne Brubaker that “[n]ow that the dust has settled after the so-called ‘Science Wars’ […] it is an opportune time to reassess the ways in which poststructural theory both argues persuasively for mathematics as a culturally embedded practice – a method as opposed to a metaphysics – and, at the same time, reinscribes realist notions of mathematics as a noise-free description of a mind independent reality.” Through a close re-reading of Jacques Derrida’s work I argue, in alliance with Vicki Kirby’s critique of the work of Brian Rotman, not only that Brubaker misunderstands Derrida’s “writing” but also that her argument constitutes a typical instance of much wider misreadings of Derrida and “poststructuralism” across a range of disciplines in terms of the ways in which her text re-institutes the very stabilities it itself attributes to Derrida’s texts.