952 resultados para master curve
Resumo:
When considering NLO corrections to thermal particle production in the “relativistic” regime, in which the invariant mass squared of the produced particle is K2 ~ (πT)2, then the production rate can be expressed as a sum of a few universal “master” spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K2 ~(8πT)2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K2 ~ (πT)2.
Resumo:
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.
Resumo:
Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]
Resumo:
BACKGROUND: Robotic-assisted laparoscopic surgery (RALS) is evolving as an important surgical approach in the field of colorectal surgery. We aimed to evaluate the learning curve for RALS procedures involving resections of the rectum and rectosigmoid. METHODS: A series of 50 consecutive RALS procedures were performed between August 2008 and September 2009. Data were entered into a retrospective database and later abstracted for analysis. The surgical procedures included abdominoperineal resection (APR), anterior rectosigmoidectomy (AR), low anterior resection (LAR), and rectopexy (RP). Demographic data and intraoperative parameters including docking time (DT), surgeon console time (SCT), and total operative time (OT) were analyzed. The learning curve was evaluated using the cumulative sum (CUSUM) method. RESULTS: The procedures performed for 50 patients (54% male) included 25 AR (50%), 15 LAR (30%), 6 APR (12%), and 4 RP (8%). The mean age of the patients was 54.4 years, the mean BMI was 27.8 kg/m(2), and the median American Society of Anesthesiologists (ASA) classification was 2. The series had a mean DT of 14 min, a mean SCT of 115.1 min, and a mean OT of 246.1 min. The DT and SCT accounted for 6.3% and 46.8% of the OT, respectively. The SCT learning curve was analyzed. The CUSUM(SCT) learning curve was best modeled as a parabola, with equation CUSUM(SCT) in minutes equal to 0.73 × case number(2) - 31.54 × case number - 107.72 (R = 0.93). The learning curve consisted of three unique phases: phase 1 (the initial 15 cases), phase 2 (the middle 10 cases), and phase 3 (the subsequent cases). Phase 1 represented the initial learning curve, which spanned 15 cases. The phase 2 plateau represented increased competence with the robotic technology. Phase 3 was achieved after 25 cases and represented the mastery phase in which more challenging cases were managed. CONCLUSIONS: The three phases identified with CUSUM analysis of surgeon console time represented characteristic stages of the learning curve for robotic colorectal procedures. The data suggest that the learning phase was achieved after 15 to 25 cases.
Resumo:
We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.
Resumo:
Palynology provides the opportunity to make inferences on changes in diversity of terrestrial vegetation over long time scales. The often coarse taxonomic level achievable in pollen analysis, differences in pollen production and dispersal, and the lack of pollen source boundaries hamper the application of diversity indices to palynology. Palynological richness, the number of pollen types at a constant pollen count, is the most robust and widely used diversity indicator for pollen data. However, this index is also influenced by the abundance distribution of pollen types in sediments. In particular, where the index is calculated by rarefaction analysis, information on taxonomic richness at low abundance may be lost. Here we explore information that can be extracted from the accumulation of taxa over consecutive samples. The log-transformed taxa accumulation curve can be broken up into linear sections with different slope and intersect parameters, describing the accumulation of new taxa within the section. The breaking points may indicate changes in the species pool or in the abundance of high versus low pollen producers. Testing this concept on three pollen diagrams from different landscapes, we find that the break points in the taxa accumulation curves provide convenient zones for identifying changes in richness and evenness. The linear regressions over consecutive samples can be used to inter- and extrapolate to low or extremely high pollen counts, indicating evenness and richness in taxonomic composition within these zones. An evenness indicator, based on the rank-order-abundance is used to assist in the evaluation of the results and the interpretation of the fossil records. Two central European pollen diagrams show major changes in the taxa accumulation curves for the Lateglacial period and the time of human induced land-use changes, while they do not indicate strong changes in the species pool with the onset of the Holocene. In contrast, a central Swedish pollen diagram shows comparatively little change, but high richness during the early Holocene forest establishment. Evenness and palynological richness are related for most periods in the three diagrams, however, sections before forest establishment and after forest clearance show high evenness, which is not necessarily accompanied by high palynological richness, encouraging efforts to separate the two.