892 resultados para marital separation
Resumo:
A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A silica-based monolithic capillary column was prepared via a sol-gel process. The continuous skeleton and large through-pore structure were characterized by scanning electron microscopy (SEM). The native silica monolith has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). Column efficiencies greater than 250000 plates/m for capillary electrochromatography (CEC) separation of basic compounds were obtained. It was observed that retention of basic pharmaceuticals on the silica monolith was mainly contributed by a cation-exchange mechanism. Other retention mechanisms including reversed-phase and normal-phase mechanisms and electrophoresis of basic compounds also played a role in separation. A comparison of the differences between CEC and capillary zone electrophoresis (CZE) separation was also discussed.