981 resultados para magnetic circular dichroism, half-metal
Resumo:
Insoluble expression of heterologous proteins in Escherichia coli is a major bottleneck of many structural genomics and high-throughput protein biochemistry projects. Many of these proteins may be amenable to refolding, but their identification is hampered by a lack of high-throughput methods. We have developed a matrix-assisted refolding approach in which correctly folded proteins are distinguished from misfolded proteins by their elution from affinity resin under nondenaturing conditions. Misfolded proteins remain adhered to the resin, presumably via hydrophobic interactions. The assay can be applied to insoluble proteins on an individual basis but is particularly well suited for high-throughput applications because it is rapid, automatable and has no rigorous sample preparation requirements. The efficacy of the screen is demonstrated on small-scale expression samples for 15 proteins. Refolding is then validated by large-scale expressions using SEC and circular dichroism.
Resumo:
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA. telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of rnRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem beta alpha beta beta alpha beta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.
Resumo:
The effect of glycosylation on AFP foldability was investigated by parallel quantitative and qualitative analyses of the refolding of glycosylated and nonglycosylated AFP variants. Both variants were successfully refolded by dialysis from the denatured-reduced state, attaining comparable ``refolded peak'' profiles and refolding yields as determined by reversed-phase HPLC analysis. Both refolded variants also showed comparable spectroscopic fingerprints to each other and to their native counterparts, as determined by circular dichroism spectroscopy. Inclusion body-derived AFP was also readily refolded via dilution under the same redox conditions as dialysis refolding, showing comparable circular dichroism fingerprints as native nonglycosylated AFP. Quantitative analyses of inclusion body-derived AFP showed sensitivity of AFP aggregation to proteinaceous and nonproteinaceous inclusion body contaminants, where refolding yields increased with increasing AFP purity. All of the refolded AFP variants showed positive responses in ELISA that corresponded with the attainment of a bioactive conformation. Contrary to previous reports that the denaturation of cord serum AFP is an irreversible process, these results clearly show the reversibility of AFP denaturation when refolded under a redox-controlled environment, which promotes correct oxidative disulfide shuffling. The successful refolding of inclusion body-derived AFP suggests that fatty acid binding may not be required for the attainment of a rigid AFP tertiary structure, contrary to earlier studies. The overall results from this work demonstrate that foldability of the AFP molecule from its denatured-reduced state is independent of its starting source, the presence or absence of glycosylation and fatty acids, and the refolding method used (dialysis or dilution).
Resumo:
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Resumo:
Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Resumo:
A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.
Resumo:
Human adrenomedullin (AM) is a 52-amino acid peptide belonging to the calcitonin peptide family, which also includes calcitonin gene-related peptide (CGRP) and AM2. The two AM receptors, AM(1) and AM(2), are calcitonin receptor-like receptor (CL)/receptor activity-modifying protein (RAMP) (RAMP2 and RAMP3, respectively) heterodimers. CGRP receptors comprise CL/RAMP1. The only human AM receptor antagonist (AM(22-52)) is a truncated form of AM; it has low affinity and is only weakly selective for AM(1) over AM(2) receptors. To develop novel AM receptor antagonists, we explored the importance of different regions of AM in interactions with AM(1), AM(2), and CGRP receptors. AM(22-52) was the framework for generating further AM fragments (AM(26-52) and AM(30-52)), novel AM/alphaCGRP chimeras (C1-C5 and C9), and AM/AM(2) chimeras (C6-C8). cAMP assays were used to screen the antagonists at all receptors to determine their affinity and selectivity. Circular dichroism spectroscopy was used to investigate the secondary structures of AM and its related peptides. The data indicate that the structures of AM, AM2, and alphaCGRP differ from one another. Our chimeric approach enabled the identification of two nonselective high-affinity antagonists of AM(1), AM(2), and CGRP receptors (C2 and C6), one high-affinity antagonist of AM(2) receptors (C7), and a weak antagonist selective for the CGRP receptor (C5). By use of receptor mutagenesis, we also determined that the C-terminal nine amino acids of AM seem to be responsible for its interaction with Glu74 of RAMP3. We provide new information on the structure-activity relationship of AM, alphaCGRP, and AM2 and how AM interacts with CGRP and AM(2) receptors.
Resumo:
The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor (GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode of activation of this receptor could be key in developing therapeutic agents for associated health conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this receptor (in complex with an antagonist) has been published, the details of receptor-agonist interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) region, has not been well studied for its role in receptor signalling. This research project investigated these questions. In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by evaluating cAMP production, cell surface expression, total cell expression and aCGRP-mediated receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural interaction study by surface plasmon resonance (SPR). Following expression and purification, these receptor proteins were found to individually retain their secondary structures when analysed by circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin family receptor paradigm. The research described in this thesis has produced novel data that contributes to a clearer understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a useful tool in determining novel interacting GPCR partners of RAMPs.
Resumo:
The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.
Resumo:
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin and they are usually accompanied by fibrotic reactions that result in the production of a scar. Natural biopolymers such as collagen have been a lot investigated as potential source of biomaterial for skin replacement in Tissue Engineering. Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role in connective tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches, as skin tissue engineering. In addition, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are skin and bone from bovine and porcine origin. However, these last carry high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy and immunogenic responses. On the other hand, the increase of jellyfish has led us to consider this marine organism as potential collagen source for tissue engineering applications. In the present study, novel form of acid and pepsin soluble collagen were extracted from dried Rhopilema hispidum jellyfish species in an effort to obtain an alternative and safer collagen. We studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using pepsin extraction method (34.16 mg collagen/g of tissue). The isolated collagen was characterized by SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy.
Resumo:
This paper details methodologies that have been explored for the fast proofing of on-chip architectures for Circular Dichroism techniques. Flow-cell devices fabricated from UV transparent Quartz are used for these experiments. The complexity of flow-cell production typically results in lead times of six months from order to delivery. Only at that point can the on-chip architecture be tested empirically and any required modifications determined ready for the next six month iteration phase. By using the proposed 3D printing and PDMS moulding techniques for fast proofing on-chip architectures the optimum design can be determined within a matter of hours prior to commitment to quartz chip production.
Resumo:
FtsZ, a bacterial tubulin homologue, is a cytoskeleton protein that plays key roles in cytokinesis of almost all prokaryotes. FtsZ assembles into protofilaments (pfs), one subunit thick, and these pfs assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane, and also serves as a scaffold to recruit cell-wall remodeling proteins for complete cell division in vivo. FtsZ can be subdivided into 3 main functional regions: globular domain, C terminal (Ct) linker, and Ct peptide. The globular domain binds GTP to assembles the pfs. The extreme Ct peptide binds membrane proteins to allow cytoplasmic FtsZ to function at the inner membrane. The Ct linker connects the globular domain and Ct peptide. In the present studies, we used genetic and structural approaches to investigate the function of Escherichia coli (E. coli) FtsZ. We sought to examine three questions: (1) Are lateral bonds between pfs essential for the Z ring? (2) Can we improve direct visualization of FtsZ in vivo by engineering an FtsZ-FP fusion that can function as the sole source of FtsZ for cell division? (3) Is the divergent Ct linker of FtsZ an intrinsically disordered peptide (IDP)?
One model of the Z ring proposes that pfs associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of E. coli FtsZ by inserting either small peptides or whole FPs. Of the four lateral surfaces on FtsZ pfs, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174 located on the left and right surfaces, completely blocked function, and were identified as possible sites for essential lateral interactions. Another goal was to find a location within FtsZ that supported fusion of FP reporter proteins, while allowing the FtsZ-FP to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by super-resolution techniques.
The Ct linker is the most divergent region of FtsZ in both sequence and length. In E. coli FtsZ the Ct linker is 50 amino acids (aa), but for other FtsZ it can be as short as 37 aa or as long as 250 aa. The Ct linker has been hypothesized to be an IDP. In the present study, circular dichroism confirmed that isolated Ct linkers of E. coli (50 aa) and C. crescentus (175 aa) are IDPs. Limited trypsin proteolysis followed by mass spectrometry (LC-MS/MS) confirmed Ct linkers of E. coli (50 aa) and B. subtilis (47 aa) as IDPs even when still attached to the globular domain. In addition, we made chimeras, swapping the E. coli Ct linker for other peptides and proteins. Most chimeras allowed for normal cell division in E. coli, suggesting that IDPs with a length of 43 to 95 aa are tolerated, sequence has little importance, and electrostatic charge is unimportant. Several chimeras were purified to confirm the effect they had on pf assembly. We concluded that the Ct linker functions as a flexible tether allowing for force to be transferred from the FtsZ pf to the membrane to constrict the septum for division.
Resumo:
Electrostatic interactions are of fundamental importance in determining the structure and stability of macromolecules. For example, charge-charge interactions modulate the folding and binding of proteins and influence protein solubility. Electrostatic interactions are highly variable and can be both favorable and unfavorable. The ability to quantify these interactions is challenging but vital to understanding the detailed balance and major roles that they have in different proteins and biological processes. Measuring pKa values of ionizable groups provides a sensitive method for experimentally probing the electrostatic properties of a protein.
pKa values report the free energy of site-specific proton binding and provide a direct means of studying protein folding and pH-dependent stability. Using a combination of NMR, circular dichroism, and fluorescence spectroscopy along with singular value decomposition, we investigated the contributions of electrostatic interactions to the thermodynamic stability and folding of the protein subunit of Bacillus subtilis ribonuclease P, P protein. Taken together, the results suggest that unfavorable electrostatics alone do not account for the fact that P protein is intrinsically unfolded in the absence of ligand because the pKa differences observed between the folded and unfolded state are small. Presumably, multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.
Resumo:
In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.