919 resultados para lower exercise capacity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 ± 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 ± 25; EPI, 122 ± 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (Rd) (40 min: CON, 33.8 ± 3; EPI, 20.9 ± 4.9 µmol · kg-1 · min-1, P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose Rd during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta -oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 ± 3.1 yr of age, range 20-42 yr, body mass index 22.6 kg/m2, range 17-26 kg/m2) underwent a 9-day exercise training program of 60 min cycling per day at 63% peak oxygen uptake (VO2 peak; 104 ± 14 W). On days 1 and 9 of the program, muscle biopsies were sampled from the vastus lateralis muscle at rest, at the completion of exercise, and again 3 h postexercise. Gene expression of key components of FA transport [FA translocase (FAT/CD36), plasma membrane-associated FA-binding protein], beta -oxidation [carntine palmitoyltransferase(CPT) I, beta -hydroxyacyl-CoA dehydrogenase] and transcriptional control [peroxisome proliferator-activated receptor (PPAR)alpha , PPARgamma , PPARgamma coactivator 1, sterol regulatory element-binding protein-1c] were unaltered by exercise when measured at the completion and at 3 h postexercise. Training increased total lipid oxidation by 24% (P < 0.05) for the 1-h cycling bout. This increased capacity for lipid oxidation was accompanied by an increased expression of FAT/CD36 and CPT I mRNA. Similarly, FAT/CD36 protein abundance was also upregulated by exercise training. We conclude that enhanced fat oxidation after exercise training is most closely associated with the genes involved in regulating FA uptake across the plasma membrane (FAT/CD36) and across the mitochondrial membrane (CPT I).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of combined α- and β-adrenergic blockade on glucose kinetics during intense exercise. Six endurance-trained men exercised for 20 minutes at approximately 78% of their peak oxygen consumption (VO 2) following ingestion of a placebo (CON) or combined α- (prazosin hydrochloride) and β- (timolol maleate) adrenoceptor antagonists (BLK). Plasma glucose increased during exercise in CON (0 minutes: 5.5 ± 0.1; 20 minutes: 6.5 ± 0.3 mmol · L−1, P < .05). In BLK, the exercise-induced increase in plasma glucose was abolished (0 minutes: 5.7 ± 0.3; 20 minutes: 5.7 ± 0.1 mmol · L−1). Glucose kinetics were measured using a primed, continuous infusion of [6,6-2H] glucose. Glucose production was not different between trials; on average these values were 25.3 ± 3.9 and 30.9 ± 4.4 μmol · kg−1 · min−1 in CON and BLK, respectively. Glucose uptake during exercise was greater (P < .05) in BLK (30.6 ± 4.6 μmol · kg−1 · min−1) compared with CON (18.4 ± 2.5 μmol · kg−1 · min−1). In BLK, plasma insulin and catecholamines were higher (P < .05), while plasma glucagon was unchanged from CON. Free fatty acids (FFA) and glycerol were lower (P < .05) in BLK. These findings demonstrate that adrenergic blockade during intense exercise results in a blunted plasma glucose response that is due to enhanced glucose uptake, with no significant change in glucose production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article focuses on children’s capacity to exercise legal rights. It is argued that, undisturbed by the High Court’s subsequent decision, the Family Court in B & B & Minister for Immigration and Multicultural & Indigenous Affairs [2003] Fam CA has found that a child’s capacity is qualified only by contingent factors. This represents a significant development of the prevailing Gillick approach for the determination of the competence of children and young people. Where the Gillick approach requires a positive inquiry as to whether the actual maturity level of an
individual child or young person is adequate relative to the question at issue, the new approach focuses on barriers to justice encountered by the child. At least in relation to some matters, capacity is presupposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 ± 3% peak oxygen consumption (VO2 peak) (Lo) or 27 ± 2 min at 83 ± 2% VO2 peak (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 ± 35 mmol/kg dry mass; Hi: 420 ± 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 ± 18 mmol/kg dry mass) compared with Lo (262 ± 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 ± 24 mmol/kg) than in Lo (146 ± 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (~2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 ± 0.7 vs. 1.6 ± 0.3 arbitrary units) and 61% higher in Hi (2.9 ± 0.5 vs. 1.8 ± 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at ~40 and ~80% VO2 peak, with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes and obesity are characterised by an impairment in mitochondrial function resulting in a decrease in glucose and fatty acid oxidation, respiration and an increase in intramuscular triglycerides (IMTG's) and insulin resistance. Peroxisome proliferator-activated receptor (PPAR)-ggr coactivator 1agr (PGC-1agr) is a nuclear transcriptional coactivator which regulates several important metabolic processes including, mitochondrial biogenesis, adaptive thermogenesis, respiration, insulin secretion and gluconeogenesis. In addition, PGC-1agr has been shown to increase the percentage of oxidative type I muscle fibres, with the latter responsible for the majority of insulin stimulated glucose uptake. PGC-1agr also co-activates PPAR's agr, bgr/dgr and ggr which are important transcription factors of genes regulating lipid and glucose metabolism. Exercise causes mitochondrial biogenesis, improves skeletal muscle fatty acid oxidation capacity and insulin sensitivity, therefore making it an important intervention for the treatment of insulin resistance. The expression of PGC-1agr mRNA is reduced in diabetic subjects, however, it is rapidly induced in response to interventions which signal alterations in metabolic requirements, such as exercise. Because of the important role of PGC-1agr in the control of energy metabolism and insulin sensitivity, it is seen as a candidate factor in the etiology of type 2 diabetes and a drug target for its therapeutic treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proposed that mitochondrial uncoupling protein 3 (UCP3) behaves as an uncoupler of oxidative phosphorylation. In a cross-sectional study, UCP3 protein levels were found to be lower in all fibre types of endurance-trained cyclists as compared to healthy controls. This decrease was greatest in the type I oxidative fibres, and it was hypothesised that this may be due to the preferential recruitment of these fibres during endurance training. To test this hypothesis, we compared the effects of 6 weeks of endurance (ETr) and sprint (STr) running training on UCP3 mRNA expression and fibre-type protein content using real-time PCR and immunofluorescence techniques, respectively. UCP3 mRNA and protein levels were downregulated similarly in ETr and STr (UCP3 mRNA: by 65 and 50 %, respectively; protein: by 30 and 27 %, respectively). ETr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 54, 29 and 16 %, respectively. STr significantly reduced UCP3 protein content in type I, IIa and IIx muscle fibres by 24, 31 and 26 %, respectively. The fibre-type reductions in UCP3 due to ETr, but not STr, were significantly different from each other, with the effect being greater in type I than in type IIa, and in type IIa than in type IIx fibres. As a result, compared to STr, ETr reduced UCP3 expression significantly more in fibre type I and significantly less in fibre types IIx. This suggests that the more a fibre is recruited, the more it adapts to training by a decrease in its UCP3 expression. In addition, the more a fibre type depends on fatty acid beta oxidation and oxidative phosphorylation, the more it responds to ETr by a decrease in its UCP3 content.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are 3 distinct yet closely integrated processes that operate together to satisfy the energy requirements of muscle. The anaerobic energy system is divided into alactic and lactic components, referring to the processes  involved in the splitting of the stored phosphagens, ATP and  phosphocreatine (PCr), and the nonaerobic breakdown of carbohydrate to lactic acid through glycolysis. The aerobic energy system refers to the combustion of carbohydrates and fats in the presence of oxygen. The anaerobic pathways are capable of regenerating ATP at high rates yet are limited by the amount of energy that can be released in a single bout of intense exercise. In contrast, the aerobic system has an enormous capacity yet is somewhat hampered in its ability to delivery energy quickly. The focus of this review is on the interaction and relative contribution of the energy systems during single bouts of maximal exercise. A particular emphasis has been placed on the role of the aerobic energy system during high intensity exercise.

Attempts to depict the interaction and relative contribution of the energy systems during maximal exercise first appeared in the 1960s and 1970s. While insightful at the time, these representations were based on calculations of anaerobic energy release that now appear questionable. Given repeated reproduction over the years, these early attempts have lead to 2 common misconceptions in the exercise science and coaching professions. First, that the energy systems respond to the demands of intense exercise in an almost sequential manner, and secondly, that the aerobic system responds slowly to these energy demands, thereby playing little role in determining performance over short durations. More recent research suggests that energy is derived from each of the energy-producing pathways during almost all exercise activities. The duration of maximal exercise at which equal contributions are derived from the anaerobic and aerobic energy systems appears to occur between 1 to 2 minutes and most probably around 75 seconds, a time that is considerably earlier than has traditionally been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that fatigue during prolonged exercise arises from insufficient intramuscular glycogen, which limits tricarboxylic acid cycle (TCA) activity due to reduced TCA cycle intermediates (TCAI), was tested in this experiment. Seven endurance-trained men cycled at approximately 70% of peak O(2) uptake (Vo(2 peak)) until exhaustion with low (LG) or high (HG) preexercise intramuscular glycogen content. Muscle glycogen content was lower (P < 0.05) at fatigue than at rest in both trials. However, the increase in the sum of four measured TCAI (>70% of the total TCAI pool) from rest to 15 min of exercise was not different between trials, and TCAI content was similar after 103 +/- 15 min of exercise (2.62 +/- 0.31 and 2.59 +/- 0.28 mmol/kg dry wt for LG and HG, respectively), which was the point of volitional fatigue during LG. Subjects cycled for an additional 52 +/- 9 min during HG, and although glycogen was markedly reduced (P < 0.05) during this period, no further change in the TCAI pool was observed, thus demonstrating a clear dissociation between exercise duration and the size of the TCAI pool. Neither the total adenine nucleotide pool (TAN = ATP + ADP + AMP) nor IMP was altered compared with rest in either trial, whereas creatine phosphate levels were not different when values measured at fatigue were compared with those measured after 15 min of exercise. These data demonstrate that altered glycogen availability neither compromises TCAI pool expansion nor affects the TAN pool or creatine phosphate or IMP content during prolonged exercise to fatigue. Therefore, our data do not support the concept that a decrease in muscle TCAI during prolonged exercise in humans compromises aerobic energy provision or is the cause of fatigue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has never been, and will never be, a randomized double-blind placebo-controlled trial demonstrating that exercise in youth, adulthood or old age reduces fragility or osteoporosis-related fractures in old age. The next level of evidence, a randomized, controlled but unblinded study with fractures as an end-point is feasible but has never been done. The basis for the belief that exercise reduces fractures is derived from lower levels of ‘evidence’, namely, retrospective and prospective observation cohort studies and case–control studies. These studies are at best hypothesis generating, never hypothesis testing. They are all subject to many systematic biases and should be interpreted with extreme scepticism. Surrogate measures of anti-fracture efficacy are the next level of evidence, such as the demonstration of a reduction in risk factors for falls, a reduction in falls, a reduction in fractures due to falls, an increase in peak bone size and mass, prevention of bone loss in midlife and restoration of bone mass and structure in old age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of glycerol ingestion on fluid homeostasis, thermoregulation, and metabolism during rest and exercise. Six endurance-trained men ingested either 1 g glycerol in 20 ml H2O.kg-1 body weight (bw) (GLY) or 20 ml H2O.kg-1bw (CON) in a randomized double-blind fashion, 120 min prior to undertaking 90 min of steady state cycle exercise (SS) at 98 % of lactate threshold in dry heat (35 degrees C, 30 % RH), with ingestion of CHO-electrolyte beverage (6 % CHO) at 15-min intervals. A 15-min cycle, where performance was quantified in kJ, followed (PC). Pre-exercise urine volume was lower in GLY than CON (1119 ± 97 vs. 1503 ± 146 ml· 120 min-1; p < .05). Heart rate was lower (p < .05) throughout SS in GLY, while forearm blood flow was higher (17.1 ± 1.5 vs. 13.7 ± 3.0 ml.100 g tissue·min-1; p < .05) and rectal  temperature lower (38.7 ± 0.1 vs. 39.1 ± 0.1 ° C; p < .05) in GLY late in SS. Despite these changes, skin and muscle temperatures and circulating catecholamines were not different between trials. Accordingly, no differences were observed in muscle glycogenolysis, lactate accumulation, adenine nucleotide, and phosphocreatine degradation or inosine 5'-monophosphate accumulation when comparing GLY with CON. Of note, the work performed during PC was 5 % greater in GLY (252 ± 10 vs. 240 ± 9 kJ; p < .05). These results demonstrate that glycerol, when ingested with a bolus of water 2 hours prior to exercise, results in fluid retention, which is capable of reducing cardiovascular strain and enhancing thermoregulation. Furthermore, this practice increases exercise performance in the heat by mechanisms other than alterations in muscle metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether hypoxic exposure increased muscle buffer capacity (βm) and mechanical efficiency during exercise in male athletes. A control (CON, n=7) and a live high:train low group (LHTL, n=6) trained at near sea level (600 m), with the LHTL group sleeping for 23 nights in simulated moderate altitude (3000 m). Whole body oxygen consumption (V˙O2) was measured under normoxia before, during and after 23 nights of sleeping in hypoxia, during cycle ergometry comprising 4×4-min submaximal stages, 2-min at 5.6 ± 0.4 W kg–1, and 2-min 'all-out' to determine total work and V˙O2peak. A vastus lateralis muscle biopsy was taken at rest and after a standardized 2-min 5.6 ± 0.4 W kg–1 bout, before and after LHTL, and analysed for βm and metabolites. After LHTL, βm was increased (18%, P < 0.05). Although work was maintained, V˙O2peak fell after LHTL (7%, P < 0.05). Submaximal V˙O2 was reduced (4.4%, P < 0.05) and efficiency improved (0.8%, P < 0.05) after LHTL probably because of a shift in fuel utilization. This is the first study to show that hypoxic exposure, per se, increases muscle buffer capacity. Further, reduced V˙O2 during normoxic exercise after LHTL suggests that improved exercise efficiency is a fundamental adaptation to LHTL.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of reduced acetylcarnitine availability on oxidative metabolism during the transition from rest to steady-state exercise. Eight male subjects completed two randomised exercise trials at 68 % of the peak rate of O2 uptake (V̇O2,peak). On one occasion subjects ingested 1 g (kg body mass)−1 glucose 75 min prior to exercise (CHO), whereas the other trial acted as a control (CON). Muscle samples were obtained pre- and 75 min post-ingestion, and following 1 and 10 min of exercise. Plasma glucose and insulin were elevated (P < 0.05), and plasma free fatty acids (FFA) were lower at the onset of exercise in CHO. Acetylcarnitine (CON, 4.8 ± 1.8; CHO, 1.5 ± 0.9 mmol (kg dry mass (d.m.))−1, P < 0.05) and acetyl CoA (CON, 13.2 ± 2.3; CHO, 6.3 ± 0.6 μmol (kg d.m.)−1, P < 0.05) were lower at rest, whereas pyruvate dehydrogenase activation (PDHa) was greater in CHO compared with CON (CON, 0.78 ± 0.07; CHO, 1.44 ± 0.19 mmol min−1 (kg wet mass (w.m.))−1). Respiratory exchange ratio (RER) was significantly elevated during exercise in CHO. The acetyl groups increased at similar rates at the onset of exercise (1 min) and there was no difference in substrate phosphorylation as determined from lactate accumulation and phosphocreatine degradation between trials. Subsequently, oxidative metabolism during the transition from rest to steady-state exercise was not affected by prior carbohydrate ingestion. Although exercise resulted in the rapid activation of PDH in both trials, PDHa was greater at 1 min in CHO (CON, 2.36 ± 0.22; CHO, 2.91 ± 0.18 mmol min−1 (kg w.m.)−1). No differences in muscle metabolite levels and PDHa were observed after 10 min of moderate exercise between trials. In summary, at rest, carbohydrate ingestion induced multiple metabolic changes which included decreased acetylcarnitine availability and small increases in PDHa. The prior changes in PDHa and acetylcarnitine availability had no effect on substrate phosphorylation and oxidative metabolism at the onset of exercise. These data suggest that acetylcarnitine availability is unlikely to be the site of metabolic inertia during the transition from rest to steady-state moderate intensity exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the interaction of exercise and diet on glucose transporter (GLUT-4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty-eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high-fat (FAT, n =24) or high-carbohydrate (CHO, n =24). Animals in each dietary condition were allocated to one of two groups: control (NT, n =8) or a group that performed 8 weeks of treadmill running (4 sessions week<sup>–1</sup> of 1000 m @ 28 m min<sup>–1</sup> , RUN, n =16). Eight trained rats were killed after their final exercise bout for determination of GLUT-4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT-4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT-4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet–training interaction on GLUT-4 mRNA, such that expression was increased in both the soleus (100% ↑P < 0.05) and EDL (142% ↑P < 0.01) in CHO-fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL (↓ 45%, P < 0.05) but not the soleus (↓ 14%, NS). We conclude that exercise training in CHO-fed rats increased both GLUT-4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT-4 mRNA in muscles from fat-fed animals, exercise-induced increases in GLUT-4 protein were largely preserved, suggesting that control of GLUT-4 protein and gene expression are modified independently by exercise and diet.