963 resultados para low threshold pumping
Resumo:
In Australia, young drivers aged 17 to 24 years, and particularly males, have the highest risk of being involved in a fatal crash. Investigation of young drivers’ beliefs allows for a greater understanding of their involvement in risky behaviours, such as speeding, as beliefs are associated with intentions, the antecedent to behaviour. The theory of planned behaviour (TPB) was used to conceptualise beliefs using a scenario based questionnaire distributed to licensed drivers (N = 398). The questionnaire measured individual’s beliefs and intentions to speed in a particular situation. Consistent with a TPB-based approach, the beliefs of those with low intentions to speed (‘low intenders’) were compared with the beliefs of those with high intentions (‘high intenders’) with such comparisons conducted separately for males and females. Overall, significant differences in the beliefs held by low and high intenders and for both females and males were found. Specifically, for females, it was found that high intenders were significantly more likely to perceive advantages of speeding, less likely to perceive disadvantages, and more likely to be encouraged to speed on familiar and inappropriately signed roads than female low intenders. Females, however, did not differ in their perceptions of support from friends, with all females reporting some level of disapproval from most friends and all females (i.e., low and high intenders) reporting approval to speed from their male friends. The results for males revealed that high intenders were significantly more likely to speed on familiar and inappropriately signed roads as well as having greater perceptions of support from all friends, except from those friends with whom they worked. Low and high intending males did not differ in their perceptions of the advantages and disadvantages of speeding, with the exception of feelings of excitement whereby high intenders reported speeding to be more exciting than low intenders. The findings are discussed in terms of how they may directly inform the content of mass media and public education campaigns aimed at encouraging young drivers to slow down.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
INTRODUCTION: Workforce planning for first aid and medical coverage of mass gatherings is hampered by limited research. In particular, the characteristics and likely presentation patterns of low-volume mass gatherings of between several hundred to several thousand people are poorly described in the existing literature. OBJECTIVES: This study was conducted to: 1. Describe key patient and event characteristics of medical presentations at a series of mass gatherings, including events smaller than those previously described in the literature; 2. Determine whether event type and event size affect the mean number of patients presenting for treatment per event, and specifically, whether the 1:2,000 deployment rule used by St John Ambulance Australia is appropriate; and 3. Identify factors that are predictive of injury at mass gatherings. METHODS: A retrospective, observational, case-series design was used to examine all cases treated by two Divisions of St John Ambulance (Queensland) in the greater metropolitan Brisbane region over a three-year period (01 January 2002-31 December 2004). Data were obtained from routinely collected patient treatment forms completed by St John officers at the time of treatment. Event-related data (e.g., weather, event size) were obtained from event forms designed for this study. Outcome measures include: total and average number of patient presentations for each event; event type; and event size category. Descriptive analyses were conducted using chi-square tests, and mean presentations per event and event type were investigated using Kruskal-Wallis tests. Logistic regression analyses were used to identify variables independently associated with injury presentation (compared with non-injury presentations). RESULTS: Over the three-year study period, St John Ambulance officers treated 705 patients over 156 separate events. The mean number of patients who presented with any medical condition at small events (less than or equal to 2,000 attendees) did not differ significantly from that of large (>2,000 attendees) events (4.44 vs. 4.67, F = 0.72, df = 1, 154, p = 0.79). Logistic regression analyses indicated that presentation with an injury compared with non-injury was independently associated with male gender, winter season, and sporting events, even after adjusting for relevant variables. CONCLUSIONS: In this study of low-volume mass gatherings, a similar number of patients sought medical treatment at small (<2,000 patrons) and large (>2,000 patrons) events. This demonstrates that for low-volume mass gatherings, planning based solely on anticipated event size may be flawed, and could lead to inappropriate levels of first-aid coverage. This study also highlights the importance of considering other factors, such as event type and patient characteristics, when determining appropriate first-aid resourcing for low-volume events. Additionally, identification of factors predictive of injury presentations at mass gatherings has the potential to significantly enhance the ability of event coordinators to plan effective prevention strategies and response capability for these events.
Resumo:
The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.
Resumo:
This paper discusses the challenges of making a case for the adoption of low cost railway level crossings in Australia. Several issues are discussed in this paper including legal issues associated with the treatment of low-exposure passive crossings with low cost level crossing warning devices (LCLCWDs); principles of operation and deployment for LCLCWDs; and technical and human factors aspects of safety and availability. The Cooperative Research Centre (CRC) for Rail Innovation’s affordable level crossings project aims to address a number of these technical and human factors issues through research and field trials.
Resumo:
Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.
Resumo:
Carbon Capture and Storage (CCS) is a critical part of the global effort to address climate change as CCS has the potential to achieve deep cuts in CO2 emissions to atmosphere from the use of fossil fuels. In this context, pre-combustion capture through Integrated Gasification Combined Cycle (IGCC) power plants with CCS is one of the key pathways to low emissions power generation. There are, however, very significant challenges to the development, commercialization and deployment of IGCC with CCS technologies. This article examines matters of cost, the need for government support to early movers, the attribution of economic value for carbon dioxide and various other regulatory, policy, technical and infrastructural barriers to the development and subsequent deployment of this low emissions coal technology option.
Resumo:
The case study 3 team viewed the mitigation of noise and air pollution generated in the transport corridor that borders the study site to be a paramount driver of the urban design solution. These key urban planning strategies were adopted: * Spatial separation from transport corridor pollution source. A linear green zone and environmental buffer was proposed adjacent to the transport corridor to mitigate the environmental noise and air quality impacts of the corridor, and to offer residents opportunities for recreation * Open space forming the key structural principle for neighbourhood design. A significant open space system underpins the planning and manages surface water flows. * Urban blocks running on east-west axis. The open space rationale emphasises an east-west pattern for local streets. Street alignment allows for predominantly north-south facing terrace type buildings which both face the street and overlook the green courtyard formed by the perimeter buildings. The results of the ESD assessment of the typologies conclude that the design will achieve good outcomes through: * Lower than average construction costs compared with other similar projects * Thermal comfort; A good balance between daylight access and solar gains is achieved * The energy rating achieved for the units is 8.5 stars.
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
Objectives: To investigate if low-dose lithium may counteract the microstructural and metabolic brain changes proposed to occur in individuals at ultra-high risk (UHR) for psychosis. Methods: Hippocampal T2 relaxation time (HT2RT) and proton magnetic resonance spectroscopy (1H-MRS) measurements were performed prior to initiation and following three months of treatment in 11 UHR patients receiving low-dose lithium and 10 UHR patients receiving treatment as usual (TAU). HT2RT and 1H-MRS percentage change scores between scans were compared using one-way ANOVA and correlated with behavioural change scores. Results: Low-dose lithium significantly reduced HT2RT compared to TAU (p=0.018). No significant group by time effects were seen for any brain metabolites as measured with 1H-MRS, although myo-inositol, creatine, choline-containing compounds and NAA increased in the group receiving low-dose lithium and decreased or remained unchanged in subjects receiving TAU. Conclusions: This pilot study suggests that low-dose lithium may protect the microstructure of the hippocampus in UHR states as reflected by significantly decreasing HT2RT. Larger scale replication studies in UHR states using T2 relaxation time as a proxy for emerging brain pathology seem a feasible mean to test neuroprotective strategies such as low-dose lithium as potential treatments to delay or even prevent the progression to full-blown disorder.