942 resultados para low index single crystal surfaces
Resumo:
Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
4-Styrylcoumarin crystallizes from chloroform and hexane mixture in two morphologically different modifications. The monoclinic form (needles, P2(1)/c) undergoes stereospecific photodimerization producing anti head-to-tail dimer across pyrone double bond, whereas the triclinic modification (prisms, P ($) over bar 1) dimerizes yielding photodimer of the same configuration, but across styrenic double bond. Single crystal X-ray analyses of the dimorphs reveal the packing differences permitting rationalization of the regio- and stereochemistry of the photoproducts. The significantly low dimer yield from the prismatic crystals is rationalized.
Resumo:
Coordination-driven self-assembly of oxalato-bridged half-sandwich p-cymene ruthenium complex Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)] (O3SCF3)(2) (1a) with several ditopic donors (L-a-L-d) in methanol affords a series of bi- and tetranuclear metallamacrocycles (2a and 3-5). Similarly, the combination of 2,5-dihydroxy-1,4-benzoquinonato (dhbq)-bridged binuclear complex Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) with a flexible bidentate amide linker (L-a) in 1:1 molar ratio gave the corresponding tetranuclear complex 2b. All the macrocycles were isolated as their triflate salts in high yields and were fully characterized by various spectroscopic techniques. Finally, the molecular structures of all the assemblies were determined unambiguously by single-crystal X-diffraction analysis. Interestingly, the combination of acceptor 1a or 1b with an unsymmetrical linear ditopic donor L-a results in a self-sorted linkage isomeric (head-to-tail) macrocycle (2a or 2b) despite the possibility of formation of two different isomeric macrocycles (head-to-head or head-to-tail) due to different connectivity of the donor. Molecular structures of the complexes 2a and 2b showed tetranuclear rectangular geometry with dimensions of 5.51 angstrom x 13.29 angstrom for 2a and 7.91 angstrom x 13.46 angstrom for 2b. In both cases, two binuclear Ru-2(II) building blocks are connected by a mu-N-(4-pyridyl)isonicotinamide donor in a head-to-tail fashion. Surprisingly, the macrocycle 2a loses one counteranion and cocrystallizes with monodeprotonated 1,3,5-trihydroxybenzene via strong intermolecular pi-pi stacking and hydrogen bonding. The tweezer complex 3 showed strong fluorescence in solution, and it showed fluorescence sensing toward nitroaromatic compounds. A fluorescence study demonstrated a marked quenching of the initial fluorescence intensity of the macrocycle 3 upon gradual addition of trinitrotoluene and exhibits significant fluorescence quenching response only for nitroaromatic compounds compared to various other aromatic compounds tested.
Resumo:
The reactions of the mononuclear cyclodiphosphazane complexes, cis-[Mo(CO)(4){cis-[PhNP(OR)](2)}(2)] with [Mo(CO)(4)(nbd)] (nbd = norbornadiene). [Mo(CO)(4)(NHC5H10)(2)] or [MCl(2)(cod)] (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes; [Mo-2(CO)(8){mu-cis-[PhNP(OR)](2)}(2)] (R = C(5)H(4)Me-p 5 or CH2CF3 6) or the heterobimetallic complexes. [Mo-2(CO)(8){mu-cis-[PhNP(OE)](2)}(2)MCl(2)] (R = C(6)H(4)Me-p; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, cis-[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}] with (M'Cl-2(cod)] afforded the trinuclear complexes, cis-[M'Cl-2[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}](2)] (M' = Pd, M = Mo, A = P(OMe)(3) 10; M' = Pt, M = Mo. A = P(OMe)(3) 11; M' = Pd. M = W. A = NHC5H10 12; M' = Pt, M = W. A = NHC5H10 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.
Resumo:
A new ruthenium(II) complex of the type [Ru(O2CMe)(MeCN)2(PPh3)2](CiO4) (1) has been isolated from a reaction between Ru2Cl(O2CMe), and PPh3 in MeCN followed by the addition of NaClO4. The structure of 1 is determined by single crystal X-ray studies. The crystal belongs to the monoclinic space group C2/m with the following unit cell dimensions for the C42H39N2O6P2ClRu(M = 866.15): a = 23.295(1)angstrom, b = 23.080(1)angstrom, c = 9.159(1)angstrom, beta = 107.32(1)-degrees, V = 4701(1)angstrom3, Z = 4, D(c) = 1.224 gcm-3, lambda(Mo - K-alpha) = 0.7107 angstrom, mu(Mo - K-alpha) = 4.09 cm-1, T = 293K, R = 0.081 (R(w) = 0.094) for 2860 reflections with I greater-than-or-equal-to 3-sigma(I) and g = 0.015853. In the complex cation, the symmetry about the metal centre is essentially octahedral showing the presence of a chelating acetato, two cis-oriented MeCN and two trans-disposed PPh3 ligands. The mechanistic aspects of the core cleavage reaction are discussed.
Resumo:
Nicotinate-N-oxide and isonicotinate-N-oxide have been employed to synthesize four heterometallic metallamacrocycles (dppf)(2)Pd-2(nicotinate-N-oxide)(2)](OTf)(2) (1), (dppf)(2)Pt-2(nicotinate-N-oxide)(2)](OTf)(2) (2), (dppf) 2Pd2(isonicotinate-N-oxide)(2)](OTf)(2) (3) and (dppf)(2)Pt-2(isonicotinate-N-oxide)(2)](OTf)(2) (4). The complexes represent the first examples of metallamacrocycles driven by solely Pd(II)/Pt(II)-O coordination using carboxylate-N-oxide donor. All the complexes 1-4 are characterized by IR, UV-Vis, multinuclear NMR spectroscopic and ESI-MS studies. The molecular structures of the complexes 1 and 3 are unambiguously determined by single crystal X-ray diffraction analysis. Despite the possibility of formation of several linkage isomers due to ambidentate nature of the donors, exclusive formation of 2 + 2] self-assembled single isomeric metallamacrocycle in each case is interesting observation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.
Resumo:
Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.
Resumo:
Treatment of the lambda(3)-cyclotriphosphazanes, cis-{EtNP(OR)}(3) [R = C6H4Br-4 (L-1) or C6H4Br-2 (L-2)] with [Mo(CO)(4)(NBD)] (NBD = norbornadiene) yields the mononuclear complexes [Mo(CO)(4)L-1] (1) and [Mo(CO)(4)L-2] (2). which have been characterised by IR, NMR (P-31 and H-1) and FAB mass spectral data. The structure of 1 has been confirmed by single crystal X-ray analysis. The structural and conformational changes brought about by complexation are discussed in terms of a bonding model based on "negative hyperconjugation". (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Single crystals of Bi2V1-xGexO5.5-x/2 (x = 0.2, 0.4, and 0.6) were grown by slow cooling of melts. Bismuth vanadate transforms from an orthorhombic to a tetragonal structure and subsequently to an orthorhombic system when the Ge4+ concentration was varied from x = 0.2 to x = 0.6. All of these compositions crystallized in polar space groups (Aba2, F4mm, and Fmm2 for x = 0.2, 0.4, and 0.6, respectively). The structures were fully determined by single crystal X-ray diffraction studies, (C) 1999 Elsevier Science Ltd.
Resumo:
In continuation of our studies on crystal engineering using fluorine as a steering group, the photobehaviour of di and tri fluoro 4-styrylcoumarins has been examined. It is found that out of the five derivatives, four crystallize into P-packing mode producing syn-HH photodimer upon irradiation whereas the parent hydrocarbon produces an anti K-T dimer. The packing features of the photolabile crystals of 4-(4-fluorostyryl)-6-fluorocoumarin (1), 4-(2,6-difluorostyryl) 6-fluorocoumarin (2) and the photodimer (3a) of 4-(2,6-fluorostyryl)-7-fluorocoumarin (3) have been determined by single crystal X-ray diffraction studies. The stereochemistry of the photodimer of 4-(2-fluorostyryl)-6-fluorocoumarin (4) is deduced based on preliminary X-ray crystallographic data. However, 4-(2,6-difluorostyryl) coumarin (5) is photoinert. The remarkable steering ability of fluorine is established with the molecular packing in the crystal lattice leading to the formation of syn H-H dimer in the above four examples. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.