978 resultados para likelihood profile function
Resumo:
Neural mechanisms underlying the onset and maintenance of epileptic seizures involve alterations in inhibitory and/or excitatory neurotransmitter pathways. Thus, the prospecting of novel molecules from natural products that target both inhibition and excitation systems has deserved interest in the rational design of new anticonvulsants. We isolated the alkaloids (+)-erythravine and ( +)-11-alpha-hydroxyerythravine from the flowers of Erythrina mulungu and evaluated the action of these compounds against chemically induced seizures in rats. Our results showed that the administration of different doses of (+)-erythravine inhibited seizures evoked by bicuculline, pentylenetetrazole, and kainic acid at maximum of 80, 100, and 100%, respectively, whereas different doses of (+)-11-alpha-hydroxy-erythravine inhibited seizures at a maximum of 100% when induced by bicuculline, NMDA, and kainic acid, and, to a lesser extent, PTZ (60%). The analysis of mean latency to seizure onset of nonprotected animals, for specific doses of alkaloids, showed that (+)-erythravine increased latencies to seizures induced by bicuculline. Although (+)-erythravine exhibited very weak anticonvulsant action against seizures induced by NMDA, this alkaloid increased the latency in this assay. The increase in latency to onset of seizures promoted by (+)-11-alpha-hydroxy-erythravine reached a maximum of threefold in the bicuculline test. All animals were protected against death when treated with different doses of (+)-11-alpha-hydroxy-erythravine in the tests using the four chemical convulsants. Identical results were obtained when using (+)-erythravine in the tests of bicuculline, NMDA, and VIZ, and, to a lesser extent, kainic acid. Therefore, these data validate the anticonvulsant properties of the tested alkaloids, which is of relevance in consideration of the ethnopharmacological/biotechnological potential of E. mulungu. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hexamerins and prophenoloxidases (PPOs) proteins are members of the arthropod-haemocyanin superfamily. In contrast to haemocyanin and PPO, hexamerins do not bind oxygen, but mainly play a role as storage proteins that supply amino acids for insect metamorphosis. We identified seven genes encoding hexamerins, three encoding PPOs, and one hexamerin pseudogene in the genome of the parasitoid wasp Nasonia vitripennis. A phylogenetic analysis of hexamerins and PPOs from this wasp and related proteins from other insect orders suggests an essentially order-specific radiation of hexamerins. Temporal and spatial transcriptional profiles of N. vitripennis hexamerins suggest that they have physiological functions other than metamorphosis, which are arguably coupled with its lifestyle.
Resumo:
Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer(LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 mu A was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L-1 H2SO4, at a sweeping rate of 50mVs(-1). Oxygen-like species are formed at less positive potentials for the Pt-SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k Omega cm(2)) compared with the Pt-SnO2/PAH film with 1 min of electrodeposition (0.4 k Omega cm(2)). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
Aminoacyl-transfer RNA (tRNA) synthetases (aaRS) are key players in translation and act early in protein synthesis by mediating the attachment of amino acids to their cognate tRNA molecules. In plants, protein synthesis may occur in three subcellular compartments (cytosol, mitochondria, and chloroplasts), which requires multiple versions of the protein to be correctly delivered to its proper destination. The organellar aaRS are nuclear encoded and equipped with targeting information at the N-terminal sequence, which enables them to be specifically translocated to their final location. Most of the aaRS families present organellar proteins that are dual targeted to mitochondria and chloroplasts. Here, we examine the dual targeting behavior of aaRS from an evolutionary perspective. Our results show that Arabidopsis thaliana aaRS sequences are a result of a horizontal gene transfer event from bacteria. However, there is no evident bias indicating one single ancestor (Cyanobacteria or Proteobacteria). The dual-targeted aaRS phylogenetic relationship was characterized into two different categories (paralogs and homologs) depending on the state recovered for both dual-targeted and cytosolic proteins. Taken together, our results suggest that the dual-targeted condition is a gain-of-function derived from gene duplication. Selection may have maintained the original function in at least one of the copies as the additional copies diverged.
Resumo:
The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee (Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (> 10 min) to earlier in life (by 3-4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (< 10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.
Resumo:
Bariatric surgery in morbidly obese type 2 diabetic (T2DM) patients is associated with high rates of diabetes remission. We investigated the mechanisms of the anti-diabetic effect of the laparoscopic ileal interposition with sleeve gastrectomy (LII-SG) in normal weight (NW), overweight (OW) and obese (OB) T2DM patients. Ninety-four patients (aged 54 +/- 8 years) with long-standing (median 10 years), treated diabetes (median HbA(1c) = 8.6%), who were NW (15), OW (64) or OB (15) based on BMI, underwent LII-SG. Insulin sensitivity and parameters of -cell function were measured from an Oral Glycaemic Tolerance Test pre- and post-operatively. At a median of 13.4 months post-operatively, weight loss averaged 9.4 +/- 1.3, 16.8 +/- 0.8 and 23.2 +/- 1.7 kg in NW, OW and OB subjects, respectively (p < 0.0001). Insulin sensitivity was fully restored (395 [108] vs 208 [99] ml min(-1) m(-2)), fasting insulin secretion rate decreased (68 [52] vs 146 [120] pmol min(-1) m(-2)) and total insulin output increased (52 [26] vs 39 [28] nmol m(-2), all p a parts per thousand currency signaEuro parts per thousand 0.001). -cell glucose sensitivity doubled (37 [33] vs 18 [24] mol min(-1) m(-2) mM(-1), p < 0.0001). The only parameter predicting remission of diabetes was a lower baseline insulin sensitivity (p = 0.005). LII-SG induced changes on T2DM by mechanisms in part distinct from weight loss, principally involving restoration of insulin sensitivity and improvement of -cell function.
Resumo:
Purpose: To evaluate wavefront performance and modulation transfer function (MTF) in the human eye aft er the implantation of diffractive or refractive multifocal intraocular lenses (IOLs). Materials and Methods: This was a prospective, interventional, comparative, nonrandomized clinical study. Uncorrected distance and near visual acuity, and wavefront analysis including MTF curves (iTrace aberrometer, Tracey Technologies, Houston, TX, USA) were measured in 60 patients aft er bilateral IOL implantation with 6 months of follow-up. Forty eyes received the diffractive ReSTOR (Alcon), 40 eyes received the refractive ReZoom (Advanced Medical Optics) and 40 eyes, the Tecnis ZM900 (Advanced Medical Optics). The comparison of MTF and aberration between the intraocular lenses was performed using analysis of variance (ANOVA), followed by the Dunn test when necessary. Results: The mean uncorrected distance visual acuity was similar in all three groups of multifocal IOLs. The ReSTOR group provided better uncorrected near visual acuity than the ReZoom group (P < 0.001), but similar to the Tecnis group. Spherical aberration was significantly higher in the ReZoom group (P = 0.007). Similar MTF curves were found for the aspheric multifocal IOL Tecnis and the spheric multifocal IOL ReSTOR, and both performed better than the multifocal IOL ReZoom in a 5 mm pupil (P < 0.001 at all spatial frequencies). Conclusions: Diffractive IOLs studied presented similar MTF curves for a 5 mm pupil diameter. Both diffractive IOLs showed similar spherical aberration, which was significantly better with the full-diffractive IOL Tecnis than with the refractive IOL ReZoom.