998 resultados para interspecific hybrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion behaviour of AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations was investigated. The corrosion rate of the unreinforced alloy was the lowest. The composite reinforced with Saffil short fibre alone exhibited slightly lower corrosion rate than the hybrid composites containing both Saffil short fibres and SiC particles. However, there was no specific trend observed in the corrosion rate of the hybrid composites with respect to the SiC particle content. The degradation of corrosion resistance of the composites was mainly attributed to the irregular and loose surface films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25 degrees having an average inter-molecular separation of similar to 5 angstrom. Interestingly, we find an overall tilt angle of 43 degrees between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the transient analysis of flexible multibody systems within a hybrid finite element framework. Hybrid finite elements are based on a two-field variational formulation in which the displacements and stresses are interpolated separately yielding very good coarse mesh accuracy. Most of the literature on flexible multibody systems uses beam-theory-based formulations. In contrast, the use of hybrid finite elements uses continuum-based elements, thus avoiding the problems associated with rotational degrees of freedom. In particular, any given three-dimensional constitutive relations can be directly used within the framework of this formulation. Since the coarse mesh accuracy as compared to a conventional displacement-based formulation is very high, the scheme is cost effective as well. A general formulation is developed for the constrained motion of a given point on a line manifold, using a total Lagrangian method. The multipoint constraint equations are implemented using Lagrange multipliers. Various kinds of joints such as cylindrical, prismatic, and screw joints are implemented within this general framework. Hinge joints such as spherical, universal, and revolute joints are obtained simply by using shared nodes between the bodies. In addition to joints, the formulation and implementation details for a DC motor actuator and for prescribed relative rotation are also presented. Several example problems illustrate the efficacy of the developed formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, analysis of extending the linear modulation range of a zero common-mode voltage (CMV) operated n-level inverter by allowing reduced CMV switching is presented. A new hybrid seven-level inverter topology with a single DC supply is also presented in this study and inverter operation for zero and reduced CMV is analysed. Each phase of the inverter is realised by cascading two three-level flying capacitor inverters with a half-bridge module in between. Proposed inverter topology is operated with zero CMV for modulation index <86% and is operated with a CMV magnitude of V-dc/18 to extend the modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilising the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant-volts-per-hertz induction motor drives and vector-controlled induction motor drives utilize pulsewidth modulation (PWM) to control the voltage applied on the motor. The method of PWM influences the pulsations in the torque developed by the motor. A space-vector-based approach to PWM facilitates special switching sequences involving the division of active state time. This paper proposes a space-vector-based hybrid PWM technique, which is a combination of the conventional and special switching sequences. The proposed hybrid PWM technique results in a lower peak-to-peak torque ripple than conventional space vector PWM(CSVPWM) at high speeds of an induction motor drive. Furthermore, the magnitude of the dominant torque harmonic due to the proposed hybrid PWM is significantly lower than that due to CSVPWM at high speeds of the drive. Experimental results from a 3.75-kW sensorless vector-controlled induction motor drive under various load conditions are presented to support analytical and simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential work of fracture (EWF) analysis is used to study the effect of the silica doping level on fracture toughness of polyimide/silica (PI/SiO2) hybrid films. By using double-edge-notched-tension (DENT) specimens with different ligament lengths, it seems that the introduction of silica additive can improve the specific essential work of fracture (w (e) ) of PI thin films, but the specific non-essential work of fracture (beta w (p) ) will decease significantly as the silica doping level increasing from 1 to 5 wt.%, and even lower than that of neat PI. The failure process of the fracture is investigated with online scanning electron microscope (SEM) observation and the parameters of non-essential work of fracture, beta and w (p) , are calculated based on finite element (FE) method.