776 resultados para intermuscular fat
Resumo:
We investigated the feasibility of postmortem percutaneous needle biopsy (PNB) for obtaining pulmonary samples adequate for the study of pulmonary fat embolism (PFE). Samples of both lungs were obtained from 26 cadavers via two different methods: (i) PNB and (ii) the double-edged knife technique, the gold standard at our institute. After water storage and Sudan III staining, six forensic pathologists independently examined all samples for the presence and severity of PFE. The results were compared and analyzed in each case regarding the vitality of the PFE and its relationship to the cause of death. The results showed that PFE was almost identically diagnosed and graded on the samples obtained via both methods. The discrepancies between the two techniques did not affect the diagnoses of vitality or cause of death related to PFE. This study demonstrates the feasibility of the PNB sampling method for the diagnosis and interpretation of PFE in the postmortem setting.
Resumo:
Pulmonary fat embolism (PFE) is frequently encountered in blunt trauma. The clinical manifestation ranges from no impairment in light cases to death due to right-sided heart failure or hypoxaemia in severe cases. Occasionally, pulmonary fat embolism can give rise to a fat embolism syndrome (FES), which is marked by multiorgan failure, respiratory disorders, petechiae and often death. It is well known that fractures of long bones can lead to PFE. Several authors have argued that PFE can arise due to mere soft tissue injury in the absence of fractures, a claim other authors disagree upon. In this study, we retrospectively examined 50 victims of blunt trauma with regard to grade and extent of fractures and crushing of subcutaneous fatty tissue and presence and severity of PFE. Our results indicate that PFE can arise due to mere crushing of subcutaneous fat and that the fracture grade correlated well with PFE severity (p = 0.011). The correlation between PFE and the fracture severity (body regions affected by fractures and fracture grade) showed a lesser significant correlation (p = 0.170). The survival time (p = 0.567), the amount of body regions affected by fat crushing (p = 0.336) and the fat crush grade (p = 0.485) did not correlate with the PFE grade, nor did the amount of body regions affected by fractures. These results may have clinical implications for the assessment of a possible FES development, as, if the risk of a PFE is known, preventive steps can be taken.
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (− sessions). Each session included an “Early” flavor for 8 min followed by a “Late” flavor for 8 min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(−), Late(+) vs. Late(−), Early(+) vs. Late(+), and Early(−) vs. Late(−). Rats only preferred Late(+), not Early(+), relative to their respective (−) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (- sessions). Each session included an "Early" flavor for 8min followed by a "Late" flavor for 8min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(-), Late(+) vs. Late(-), Early(+) vs. Late(+), and Early(-) vs. Late(-). Rats only preferred Late(+), not Early(+), relative to their respective (-) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Resumo:
Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are the most frequent conditions leading to elevated liver enzymes and liver cirrhosis, respectively, in the Western world. However, despite strong epidemiological evidence for combined effects on the progression of liver injury, the mutual interaction of the pathophysiological mechanisms is incompletely understood. The aim of this study was to establish and analyze an experimental murine model, where we combined chronic alcohol administration with a NASH-inducing high-fat (HF) diet.
Resumo:
Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.
Resumo:
The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and secretion in youth. Forty-five obese adolescent boys were randomly assigned to one of three 3-month interventions: AE, RE, or a nonexercising control. Abdominal fat was assessed by magnetic resonance imaging, and intrahepatic lipid and intramyocellular lipid were assessed by proton magnetic resonance spectroscopy. Insulin sensitivity and secretion were evaluated by a 3-h hyperinsulinemic-euglycemic clamp and a 2-h hyperglycemic clamp. Both AE and RE prevented the significant weight gain that was observed in controls. Compared with controls, significant reductions in total and visceral fat and intrahepatic lipid were observed in both exercise groups. Compared with controls, a significant improvement in insulin sensitivity (27%) was observed in the RE group. Collapsed across groups, changes in visceral fat were associated with changes in intrahepatic lipid (r = 0.72) and insulin sensitivity (r = -0.47). Both AE and RE alone are effective for reducing abdominal fat and intrahepatic lipid in obese adolescent boys. RE but not AE is also associated with significant improvements in insulin sensitivity.
Resumo:
The aim of this study was to evaluate the accuracy of dual-echo (DE) magnetic resonance imaging (MRI) with and without fat and water separation for the quantification of liver fat content (LFC) in vitro and in patients undergoing liver surgery, with comparison to histopathologic analysis.
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
We tested the hypothesis that excess saturated fat consumption during pregnancy, lactation, and/or postweaning alters the expression of genes mediating hippocampal synaptic efficacy and impairs spatial learning and memory in adulthood. Dams were fed control chow or a diet high in saturated fat before mating, during pregnancy, and into lactation. Offspring were weaned to either standard chow or a diet high in saturated fat. The Morris Water Maze was used to evaluate spatial learning and memory. Open field testing was used to evaluate motor activity. Hippocampal gene expression in adult males was measured using RT-PCR and ELISA. Offspring from high fat-fed dams took longer, swam farther, and faster to try and find the hidden platform during the 5-day learning period. Control offspring consuming standard chow spent the most time in memory quadrant during the probe test. Offspring from high fat-fed dams consuming excess saturated fat spent the least. The levels of mRNA and protein for brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein were significantly decreased by maternal diet effects. Nerve growth factor mRNA and protein levels were significantly reduced in response to both maternal and postweaning high-fat diets. Expression levels for the N-methyl-D-aspartate receptor (NMDA) receptor subunit NR2B as well as synaptophysin were significantly decreased in response to both maternal and postweaning diets. Synaptotagmin was significantly increased in offspring from high fat-fed dams. These data support the hypothesis that exposure to excess saturated fat during hippocampal development is associated with complex patterns of gene expression and deficits in learning and memory.
Resumo:
In a retrospective analysis with two readers blinded to the clinical information, coronal short tau inversion recovery (STIR) images were compared to contrast-enhanced fat-saturated T1-weighted imaging (T1 CEfs) in 51 cases of cervical lymphoma. Interrater reliability was good to excellent. Although sensitivity and subjective quality of the STIR sequence were higher than those of the T1 CEfs sequence (sensitivity 85%/72%, respectively), specificity (82%/95%) as well as positive likelihood ratio (4.65/15.93) was much lower. Therefore, contrast-enhanced sequences should be included in the primary staging of lymphoma.