986 resultados para innovation diffusion
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion
Resumo:
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach. Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak heterogeneities
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one
Resumo:
In a previous paper [J.Fort and V.Méndez, Phys. Rev. Lett. 82, 867 (1999)], the possible importance of higher-order terms in a human population wave of advance has been studied. However, only a few such terms were considered. Here we develop a theory including all higher-order terms. Results are in good agreement with the experimental evidence involving the expansion of agriculture in Europe
Resumo:
Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.
Resumo:
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the nodes represents the anatomical ROIs and the edges are the connections between any pair of ROIs weighted by the mean GFA/FA values. A significant difference was found between the patient group vs control group in characteristic path length, clustering coefficient and small-worldness. This suggests that the MTLE network is less efficient compared to the network of the control group.
Resumo:
BACKGROUND: A number of medical journals have developed policies for accelerated publication of articles judged by the authors, the editors or the peer reviewers to be of special importance. However, the validity of these judgements is unknown. We therefore compared the importance of articles published on a "fast track" with those published in the usual way. METHODS: We identified 12 "case" articles--6 articles from the New England Journal of Medicine that were prereleased on the journal's Web site before publication in print and 6 "fast-tracked" articles from The Lancet. We then identified 12 "control" articles matched to the case articles according to journal, disease or procedure of focus, theme area and year of publication. Forty-two general internists rated the articles, using 10-point scales, on dimensions addressing the articles' importance, ease of applicability and impact on health outcomes. RESULTS: For each dimension, the mean score for the case articles was significantly higher than the mean score for the control articles: importance to clinical practice 7.6 v. 7.1 respectively (p = 0.001), importance from a public health perspective 6.5 v. 6.0 (p < 0.001), contribution to advancement of medical knowledge 6.2 v. 5.8 (p < 0.001), ease of applicability in practice 7.0 v. 6.5 (p < 0.001), potential impact on health outcomes 6.5 v. 5.9 (p < 0.001). Despite these general findings, in 5 of the 12 matched pairs of articles the control article had a higher mean score than the case article across all the dimensions. INTERPRETATION: The accelerated publication practices of 2 leading medical journals targeted articles that, on average, had slightly higher importance scores than similar articles published in the usual way. However, our finding of higher importance scores for control articles in 5 of the 12 matched pairs shows that current journal practices for selecting articles for expedited publication are inconsistent.
Resumo:
Theoretical and empirical approaches have stressed the existence of financial constraints in innovative activities of firms. This paper analyses the role of financial obstacles on the likelihood of abandoning an innovation project. Although a large number of innovation projects are abandoned before their completion, the empirical evidence has focused on the determinants of innovation while failed projects have received little attention. Our analysis differentiates between internal and external barriers on the probability of abandoning a project and we examine whether the effects are different depending on the stage of the innovation process. In the empirical analysis carried out for a panel data of potential innovative Spanish firms for the period 2004-2010, we use a bivariate probit model to take into account the simultaneity of financial constraints and the decision to abandon an innovation project. Our results show that financial constraints most affect the probability of abandoning an innovation project during the concept stage and that low-technological manufacturing and non-KIS service sectors are more sensitive to financial constraints. Keywords: barriers to innovation, failure of innovation projects, financial constraints JEL Classifications: O31, D21
Resumo:
This paper explores the relationship between firm growth, innovation and firm age. We hypothesize that young firms undertake riskier innovation activities and are more oriented towards employment growth than towards harvesting returns in the form of sales growth. Using an extensive sample of Community Innovation Survey for the period 2004-2010, we apply quantile regressions and a Heckman sample selection technique to study the impact of R&D activities on firm growth according to firm age. Our results show that R&D intensity is positively associated with firm growth. However, for young firms R&D shows an increasing influence across the quantiles, while for old firms R&D shows a stable or perhaps decreasing effect over the quantiles. Firm age shows a significant negative impact among young firms, while for the sample of old firms the impact of firm age becomes non-significant. Our Heckman estimations show the evolution of the impact of the R&D on firm growth confirming a significant impact on sales and productivity growth, while the impact is negligible for employment growth. Keywords: firm age, firm growth, innovation, quantile regression. JEL CODES: L25, L20
Resumo:
Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumor (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT. Methods and materials: Five patients (3W/2M, aged 56 ± 13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analyzed blindly, then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analyzed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analyzed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2 ± 7.7 g/mL to 5.9 ± 5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.
Resumo:
Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.