941 resultados para industry energy savings
Resumo:
RATIONALE AND OBJECTIVES: The aim of this study was to measure the radiation dose of dual-energy and single-energy multidetector computed tomographic (CT) imaging using adult liver, renal, and aortic imaging protocols. MATERIALS AND METHODS: Dual-energy CT (DECT) imaging was performed on a conventional 64-detector CT scanner using a software upgrade (Volume Dual Energy) at tube voltages of 140 and 80 kVp (with tube currents of 385 and 675 mA, respectively), with a 0.8-second gantry revolution time in axial mode. Parameters for single-energy CT (SECT) imaging were a tube voltage of 140 kVp, a tube current of 385 mA, a 0.5-second gantry revolution time, helical mode, and pitch of 1.375:1. The volume CT dose index (CTDI(vol)) value displayed on the console for each scan was recorded. Organ doses were measured using metal oxide semiconductor field-effect transistor technology. Effective dose was calculated as the sum of 20 organ doses multiplied by a weighting factor found in International Commission on Radiological Protection Publication 60. Radiation dose saving with virtual noncontrast imaging reconstruction was also determined. RESULTS: The CTDI(vol) values were 49.4 mGy for DECT imaging and 16.2 mGy for SECT imaging. Effective dose ranged from 22.5 to 36.4 mSv for DECT imaging and from 9.4 to 13.8 mSv for SECT imaging. Virtual noncontrast imaging reconstruction reduced the total effective dose of multiphase DECT imaging by 19% to 28%. CONCLUSION: Using the current Volume Dual Energy software, radiation doses with DECT imaging were higher than those with SECT imaging. Substantial radiation dose savings are possible with DECT imaging if virtual noncontrast imaging reconstruction replaces precontrast imaging.
Resumo:
This paper proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA) to improve end-user device energy efficiency. OPAMA enhances the standard legacy Power Save Mode (PSM) of IEEE 802.11 by taking into consideration application specific requirements combined with data aggregation techniques. By establishing a balanced cost/benefit tradeoff between performance and energy consumption, OPAMA is able to improve energy efficiency, while keeping the end-user experience at a desired level. OPAMA was assessed in the OMNeT++ simulator using real traces of variable bitrate video streaming applications. The results showed the capability to enhance energy efficiency, achieving savings up to 44% when compared with the IEEE 802.11 legacy PSM.
Resumo:
The widespread deployment of wireless mobile communications enables an almost permanent usage of portable devices, which imposes high demands on the battery of these devices. Indeed, battery lifetime is becoming one the most critical factors on the end-users satisfaction when using wireless communications. In this work, the optimized power save algorithm for continuous media applications (OPAMA) is proposed, aiming at enhancing the energy efficiency on end-users devices. By combining the application specific requirements with data aggregation techniques, {OPAMA} improves the standard {IEEE} 802.11 legacy Power Save Mode (PSM) performance. The algorithm uses the feedback on the end-user expected quality to establish a proper tradeoff between energy consumption and application performance. {OPAMA} was assessed in the OMNeT++ simulator, using real traces of variable bitrate video streaming applications, and in a real testbed employing a novel methodology intended to perform an accurate evaluation concerning video Quality of Experience (QoE) perceived by the end-users. The results revealed the {OPAMA} capability to enhance energy efficiency without degrading the end-user observed QoE, achieving savings up to 44 when compared with the {IEEE} 802.11 legacy PSM.
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The print- ing technology used yields a number of specific constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technologi- cal and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The production equipment used gives rise to various technological constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technological and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
The data set shows energy consumption per hour of work (in MJ/hour), and labour productivity (in USD/hour) in the PS economic sector (Energy & Mining + Industry + Construction) for the period 1970-2009 and for the following countries: Germany, Spain, USA, Canada, Italy, UK, France, Japan. The intention is to look at the relationship between energy consumption as a driver of improvements in the productivity of labour. This is of particular relevance for the discussion of reducing working time in the context of the 'degrowth' debate, as it is done in the article to which this data is a suplement.
Resumo:
This paper includes an examination of the sustainability of recent high growth in the poultry meat industry in Brazil. In addition, an assessment is made of the impact of increased production of poultry meat products on the development of local industries. Comparative studies of leading companies in the United States, Mexico, and Brazil reveal competitive advantages in the low costs of feedstuff and labor as well as disadvantages in the scale of business and management efficiency in the Brazilian poultry sector. Increases in domestic and foreign demand for Brazilian poultry meat have promoted development of the Brazilian poultry sector in local areas. The formation of industrial clusters is observed using regional data related to the location of slaughterhouses and the number of chickens farmed. Statistical analyses support observations made in this paper.
Resumo:
Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.
Resumo:
La Administración General del Estado, a través de la Comisión Nacional de la Energía, y en colaboración con los órganos competentes de las Comunidades Autónomas correspondientes, realiza inspecciones periódicas y aleatorias cada año, sobre las instalaciones de generación eléctrica, siguiendo los criterios de elección e indicaciones que la Secretaria General de la Energía del Ministerio de Industria, Turismo y Comercio imponga en cada caso. En este proyecto se analizan las distintas incidencias de las distintas tecnologías estudiadas, así como las consecuencias jurídicas y económicas. También se ofrecen las distintas propuestas de sanción como consecuencia de estas incidencias. El objeto del presente proyecto es el estudio de la reducción de costes al estado si el organismo competente (Comisión Nacional de Energía) liquidase a las diferentes instalaciones en función de las irregularidades detectadas como consecuencia de las inspecciones realizadas durante el plan 2011/2012, así como una estimación de dicho ahorro al extrapolar dichos resultados al total de instalaciones ABSTRACT The Central Government, through the National Energy Commission, in cooperation with the competent bodies of the Autonomous Communities concerned, realizes periodic and random inspections every year on electricity generation facilities, following the criteria of choice and indications that the General Secretary of Energy from the Ministry of Industry, Tourism and Commerce impose in each case. This project analyses the different incidences of the different technologies studied as well as the legal and economic consequences. It is also offered different proposals of sanction as a result of these incidents. The purpose of this project is to study the reduction of costs to the state if the competent agency (CNE) decided to close the different facilities depending on the irregularities as a result of inspections conducted during the plan 2011/2012 and as an estimate of the savings to extrapolate these results to all the facilities.
Resumo:
This paper examines the implications of strategic rigidness for technology adoption behaviours among electric utilities. Such behaviours lead to heterogeneity in firm performance and consequently affect the electric utility industry. The paper's central aim is to identify and describe the implications of strategic rigidness for a utility firm's decision making in adopting newer renewable energy technologies. The findings indicate that not all utility firms are keen to adopt these new technologies, as these firms have traditionally been operating efficiently with a more conventional and mature technological arrangement that has become embedded in the organisational routine. Case studies of Iberdrola S.A. and Enel S.p.A. as major electric utilities are detailed to document mergers and acquisitions and technology adoption decisions. The results indicate that technology adoption behaviours vary widely across utility firms with different organisational learning processes and core capabilities.
Resumo:
Although others regulations regarding feed-in tariffs for photovoltaics (PV) existed in Spain previously, the one that meant a paradigm change was the introduction in 2007 of law R.D.661/2007 which established a feed-in tariff of 41,75 cents/kWh if the installed capacity was greater than 100KWp and 44,04 cents/kWh if it was smaller. The high level of the subsidies together with the lack of a limit for the total installed capacity originates the well-known Spanish photovoltaic boom. In September 2008 the installed PV capacity accounted for 3.2GWp (while the official objective stated in the national renewable roadmap was only 400MWp). To avoid this situation a new law, R.D. 1578/2008, was proclaimed which established a decreasing feed-in tariff of 32 cents/kWh (for ground installations) and 34 cents/kWh (for rooftops) and it limited the annual installed capacity to 500MWp. Although it was successful in limiting the PV subsidies total costs, the successive and sudden changes in regulations resulted very harmful to the local PV industry. In this article, the strong influence of feed-in tariff in the development of PV installed capacity and market evolution in Spain will be analyzed in detail. In addition, a comparison with other subsidized technologies which installed capacity has had a smoother evolution, as wind energy, will be presented.
Resumo:
Photovoltaic (PV) solar energy has been growing during the last decade an explosive rate. Last year (2011) the solar cell production amounted to more than 37 GW. It is the energy technology most installed nowadays. The power generated by the 37 GW is similar to the one generated by about 7 nuclear units of 1 GW each. The solar industry is already a huge industry dominated by Asian countries led by China. It is not anymore a promise. It is just a reality.
Resumo:
A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.
Resumo:
Reducing energy consumption is one of the main challenges in most countries. For example, European Member States agreed to reduce greenhouse gas (GHG) emissions by 20% in 2020 compared to 1990 levels (EC 2008). Considering each sector separately, ICTs account nowadays for 2% of total carbon emissions. This percentage will increase as the demand of communication services and applications steps up. At the same time, the expected evolution of ICT-based developments - smart buildings, smart grids and smart transportation systems among others - could result in the creation of energy-saving opportunities leading to global emission reductions (Labouze et al. 2008), although the amount of these savings is under debate (Falch 2010). The main development required in telecommunication networks ?one of the three major blocks of energy consumption in ICTs together with data centers and consumer equipment (Sutherland 2009) ? is the evolution of existing infrastructures into ultra-broadband networks, the so-called Next Generation Networks (NGN). Fourth generation (4G) mobile communications are the technology of choice to complete -or supplement- the ubiquitous deployment of NGN. The risk and opportunities involved in NGN roll-out are currently in the forefront of the economic and policy debate. However, the issue of which is the role of energy consumption in 4G networks seems absent, despite the fact that the economic impact of energy consumption arises as a key element in the cost analysis of this type of networks. Precisely, the aim of this research is to provide deeper insight on the energy consumption involved in the usage of a 4G network, its relationship with network main design features, and the general economic impact this would have in the capital and operational expenditures related with network deployment and usage.
Resumo:
La hipótesis de esta tesis es: "La optimización de la ventana considerando simultáneamente aspectos energéticos y aspectos relativos a la calidad ambiental interior (confort higrotérmico, lumínico y acústico) es compatible, siempre que se conozcan y consideren las sinergias existentes entre ellos desde las primeras fases de diseño". En la actualidad se desconocen las implicaciones de muchas de las decisiones tomadas en torno a la ventana; para que su eficiencia en relación a todos los aspectos mencionados pueda hacerse efectiva es necesaria una herramienta que aporte más información de la actualmente disponible en el proceso de diseño, permitiendo así la optimización integral, en función de las circunstancias específicas de cada proyecto. En la fase inicial de esta investigación se realiza un primer acercamiento al tema, a través del estado del arte de la ventana; analizando la normativa existente, los componentes, las prestaciones, los elementos experimentales y la investigación. Se observa que, en ocasiones, altos requisitos de eficiencia energética pueden suponer una disminución de las prestaciones del sistema en relación con la calidad ambiental interior, por lo que surge el interés por integrar al análisis energético aspectos relativos a la calidad ambiental interior, como son las prestaciones lumínicas y acústicas y la renovación de aire. En este punto se detecta la necesidad de realizar un estudio integral que incorpore los distintos aspectos y evaluar las sinergias que se dan entre las distintas prestaciones que cumple la ventana. Además, del análisis de las soluciones innovadoras y experimentales se observa la dificultad de determinar en qué medida dichas soluciones son eficientes, ya que son soluciones complejas, no caracterizadas y que no están incorporadas en las metodologías de cálculo o en las bases de datos de los programas de simulación. Por lo tanto, se plantea una segunda necesidad, generar una metodología experimental para llevar a cabo la caracterización y el análisis de la eficiencia de sistemas innovadores. Para abordar esta doble necesidad se plantea la optimización mediante una evaluación del elemento acristalado que integre la eficiencia energética y la calidad ambiental interior, combinando la investigación teórica y la investigación experimental. En el ámbito teórico, se realizan simulaciones, cálculos y recopilación de información de distintas tipologías de hueco, en relación con cada prestación de forma independiente (acústica, iluminación, ventilación). A pesar de haber partido con un enfoque integrador, resulta difícil esa integración detectándose una carencia de herramientas disponible. En el ámbito experimental se desarrolla una metodología para la evaluación del rendimiento y de aspectos ambientales de aplicación a elementos innovadores de difícil valoración mediante la metodología teórica. Esta evaluación consiste en el análisis comparativo experimental entre el elemento innovador y un elemento estándar; para llevar a cabo este análisis se han diseñado dos espacios iguales, que denominamos módulos de experimentación, en los que se han incorporado los dos sistemas; estos espacios se han monitorizado, obteniéndose datos de consumo, temperatura, iluminancia y humedad relativa. Se ha realizado una medición durante un periodo de nueve meses y se han analizado y comparado los resultados, obteniendo así el comportamiento real del sistema. Tras el análisis teórico y el experimental, y como consecuencia de esa necesidad de integrar el conocimiento existente se propone una herramienta de evaluación integral del elemento acristalado. El desarrollo de esta herramienta se realiza en base al procedimiento de diagnóstico de calidad ambiental interior (CAI) de acuerdo con la norma UNE 171330 “Calidad ambiental en interiores”, incorporando el factor de eficiencia energética. De la primera parte del proceso, la parte teórica y el estado del arte, se obtendrán los parámetros que son determinantes y los valores de referencia de dichos parámetros. En base a los parámetros relevantes obtenidos se da forma a la herramienta, que consiste en un indicador de producto para ventanas que integra todos los factores analizados y que se desarrolla según la Norma UNE 21929 “Sostenibilidad en construcción de edificios. Indicadores de sostenibilidad”. ABSTRACT The hypothesis of this thesis is: "The optimization of windows considering energy and indoor environmental quality issues simultaneously (hydrothermal comfort, lighting comfort, and acoustic comfort) is compatible, provided that the synergies between these issues are known and considered from the early stages of design ". The implications of many of the decisions made on this item are currently unclear. So that savings can be made, an effective tool is needed to provide more information during the design process than the currently available, thus enabling optimization of the system according to the specific circumstances of each project. The initial phase deals with the study from an energy efficiency point of view, performing a qualitative and quantitative analysis of commercial, innovative and experimental windows. It is observed that sometimes, high-energy efficiency requirements may mean a reduction in the system's performance in relation to user comfort and health, that's why there is an interest in performing an integrated analysis of indoor environment aspects and energy efficiency. At this point a need for a comprehensive study incorporating the different aspects is detected, to evaluate the synergies that exist between the various benefits that meet the window. Moreover, from the analysis of experimental and innovative windows, a difficulty in establishing to what extent these solutions are efficient is observed; therefore, there is a need to generate a methodology for performing the analysis of the efficiency of the systems. Therefore, a second need arises, to generate an experimental methodology to perform characterization and analysis of the efficiency of innovative systems. To address this dual need, the optimization of windows by an integrated evaluation arises, considering energy efficiency and indoor environmental quality, combining theoretical and experimental research. In the theoretical field, simulations and calculations are performed; also information about the different aspects of indoor environment (acoustics, lighting, ventilation) is gathered independently. Despite having started with an integrative approach, this integration is difficult detecting lack available tools. In the experimental field, a methodology for evaluating energy efficiency and indoor environment quality is developed, to be implemented in innovative elements which are difficult to evaluate using a theoretical methodology This evaluation is an experimental comparative analysis between an innovative element and a standard element. To carry out this analysis, two equal spaces, called experimental cells, have been designed. These cells have been monitored, obtaining consumption, temperature, luminance and relative humidity data. Measurement has been performed during nine months and results have been analyzed and compared, obtaining results of actual system behavior. To advance this optimization, windows have been studied from the point of view of energy performance and performance in relation to user comfort and health: thermal comfort, acoustic comfort, lighting comfort and air quality; proposing the development of a methodology for an integrated analysis including energy efficiency and indoor environment quality. After theoretical and experimental analysis and as a result of the need to integrate existing knowledge, a comprehensive evaluation procedure for windows is proposed. This evaluation procedure is developed according to the UNE 171330 "Indoor Environmental Quality", also incorporating energy efficiency and cost as factors to evaluate. From the first part of the research process, outstanding parameters are chosen and reference values of these parameters are set. Finally, based on the parameters obtained, an indicator is proposed as windows product indicator. The indicator integrates all factors analyzed and is developed according to ISO 21929-1:2011"Sustainability in building construction. Sustainability indicators. Part 1: Framework for the development of indicators and a core set of indicators for buildings".