792 resultados para incident reporting
Resumo:
We appreciate the thorough discussion provided by Professor Yuan Ding. His comments raise legitimate issues. In this response, we offer clarifications and suggest avenues for future research. Our response follows the structure of the discussant’s paper and elaborates on each point separately.
Resumo:
We test for differences in financial reporting quality between companies that are required to file periodically with the SEC and those that are exempted from filing reports with the SEC under Rule 12g3-2(b). We examine three earnings quality measures: conservatism, abnormal accruals, and the predictability of earnings. Our results, for all three measures, show different financial reporting quality for companies that file with the SEC than for companies exempt from filing requirements. This paper provides empirical evidence of a link between filing with the SEC and financial reporting quality for foreign firms.
Resumo:
This paper examines accounting and financial reporting as ceremonial rituals. Its specific focus is upon changes in annual reporting rituals of financial services firms during periods of market crisis. Our preliminary findings suggest that several of the firms in our study may have made changes in their reporting rituals to construct alternative realities in an attempt to mask conflict, preserve stability, foster unity, and reinforce new social norms, core values, and corporate identities.
Resumo:
Both subclinical hypothyroidism and the metabolic syndrome have been associated with increased risk of coronary heart disease events. It is unknown whether the prevalence and incidence of metabolic syndrome is higher as TSH levels increase, or in individuals with subclinical hypothyroidism. We sought to determine the association between thyroid function and the prevalence and incidence of the metabolic syndrome in a cohort of older adults.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility, and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as STrengthening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Overwhelming evidence shows the quality of reporting of randomised controlled trials (RCTs) is not optimal. Without transparent reporting, readers cannot judge the reliability and validity of trial findings nor extract information for systematic reviews. Recent methodological analyses indicate that inadequate reporting and design are associated with biased estimates of treatment effects. Such systematic error is seriously damaging to RCTs, which are considered the gold standard for evaluating interventions because of their ability to minimise or avoid bias. A group of scientists and editors developed the CONSORT (Consolidated Standards of Reporting Trials) statement to improve the quality of reporting of RCTs. It was first published in 1996 and updated in 2001. The statement consists of a checklist and flow diagram that authors can use for reporting an RCT. Many leading medical journals and major international editorial groups have endorsed the CONSORT statement. The statement facilitates critical appraisal and interpretation of RCTs. During the 2001 CONSORT revision, it became clear that explanation and elaboration of the principles underlying the CONSORT statement would help investigators and others to write or appraise trial reports. A CONSORT explanation and elaboration article was published in 2001 alongside the 2001 version of the CONSORT statement. After an expert meeting in January 2007, the CONSORT statement has been further revised and is published as the CONSORT 2010 Statement. This update improves the wording and clarity of the previous checklist and incorporates recommendations related to topics that have only recently received recognition, such as selective outcome reporting bias. This explanatory and elaboration document-intended to enhance the use, understanding, and dissemination of the CONSORT statement-has also been extensively revised. It presents the meaning and rationale for each new and updated checklist item providing examples of good reporting and, where possible, references to relevant empirical studies. Several examples of flow diagrams are included. The CONSORT 2010 Statement, this revised explanatory and elaboration document, and the associated website (www.consort-statement.org) should be helpful resources to improve reporting of randomised trials.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrenghtening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and / or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Objective To examine the registration of noninferiority trials, with a focus on the reporting of study design and noninferiority margins. Study Design and Setting Cross-sectional study of registry records of noninferiority trials published from 2005 to 2009 and records of noninferiority trials in the International Standard Randomized Controlled Trial Number (ISRCTN) or ClinicalTrials.gov trial registries. The main outcome was the proportion of records that reported the noninferiority design and margin. Results We analyzed 87 registry records of published noninferiority trials and 149 registry records describing noninferiority trials. Thirty-five (40%) of 87 records from published trials described the trial as a noninferiority trial; only two (2%) reported the noninferiority margin. Reporting of the noninferiority design was more frequent in the ISRCTN registry (13 of 18 records, 72%) compared with ClinicalTrials.gov (22 of 69 records, 32%; P = 0.002). Among the 149 records identified in the registries, 13 (9%) reported the noninferiority margin. Only one of the industry-sponsored trial compared with 11 of the publicly funded trials reported the margin (P = 0.001). Conclusion Most registry records of noninferiority trials do not mention the noninferiority design and do not include the noninferiority margin. The registration of noninferiority trials is unsatisfactory and must be improved.
Resumo:
Purpose The accuracy, efficiency, and efficacy of four commonly recommended medication safety assessment methodologies were systematically reviewed. Methods Medical literature databases were systematically searched for any comparative study conducted between January 2000 and October 2009 in which at least two of the four methodologies—incident report review, direct observation, chart review, and trigger tool—were compared with one another. Any study that compared two or more methodologies for quantitative accuracy (adequacy of the assessment of medication errors and adverse drug events) efficiency (effort and cost), and efficacy and that provided numerical data was included in the analysis. Results Twenty-eight studies were included in this review. Of these, 22 compared two of the methodologies, and 6 compared three methods. Direct observation identified the greatest number of reports of drug-related problems (DRPs), while incident report review identified the fewest. However, incident report review generally showed a higher specificity compared to the other methods and most effectively captured severe DRPs. In contrast, the sensitivity of incident report review was lower when compared with trigger tool. While trigger tool was the least labor-intensive of the four methodologies, incident report review appeared to be the least expensive, but only when linked with concomitant automated reporting systems and targeted follow-up. Conclusion All four medication safety assessment techniques—incident report review, chart review, direct observation, and trigger tool—have different strengths and weaknesses. Overlap between different methods in identifying DRPs is minimal. While trigger tool appeared to be the most effective and labor-efficient method, incident report review best identified high-severity DRPs.
Resumo:
The objective of this analysis was to assess and compare the 5- and 10-year survival of different types of tooth-supported and implant-supported fixed dental prostheses (FDPs) and single crowns (SCs), and to describe the incidence of biological and technical complications with emphasis on quality of reporting.
Resumo:
The objective of this study was to develop a criteria catalogue serving as a guideline for authors to improve quality of reporting experiments in basic research in homeopathy. A Delphi Process was initiated including three rounds of adjusting and phrasing plus two consensus conferences. European researchers who published experimental work within the last 5 years were involved. A checklist for authors provide a catalogue with 23 criteria. The “Introduction” should focus on underlying hypotheses, the homeopathic principle investigated and state if experiments are exploratory or confirmatory. “Materials and methods” should comprise information on object of investigation, experimental setup, parameters, intervention and statistical methods. A more detailed description on the homeopathic substances, for example, manufacture, dilution method, starting point of dilution is required. A further result of the Delphi process is to raise scientists' awareness of reporting blinding, allocation, replication, quality control and system performance controls. The part “Results” should provide the exact number of treated units per setting which were included in each analysis and state missing samples and drop outs. Results presented in tables and figures are as important as appropriate measures of effect size, uncertainty and probability. “Discussion” in a report should depict more than a general interpretation of results in the context of current evidence but also limitations and an appraisal of aptitude for the chosen experimental model. Authors of homeopathic basic research publications are encouraged to apply our checklist when preparing their manuscripts. Feedback is encouraged on applicability, strength and limitations of the list to enable future revisions.