951 resultados para immunocompromised host


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hepatitis C Virus (HCV) infection is spontaneously resolved in about 30% of acutely infected individuals. In those who progress to chronic hepatitis C, HCV therapy permanently eradicates infection in about 40% of cases. It has long been suspected that host genetic factors are key determinants for the control of HCV infection. DESIGN: We will review in this study four genome-wide association studies (GWAS) and two large candidate gene studies that assessed the role of host genetic variation for the natural and treatment-induced control of HCV infection. RESULTS: The studies consistently identified genetic variation in interleukin 28B (IL28B) as the strongest predictor for the control of HCV infection. Importantly, single nucleotide polymorphisms (SNPs) in IL28B strongly predicted both spontaneous and treatment-induced HCV recovery. IL28B is located on chromosome 19 and encodes interferon-λ, a type III interferon with antiviral activity, which is mediated through the JAK-STAT pathway by inducing interferon-stimulated genes. The SNPs identified in the GWAS are in high linkage disequilibrium with coding or functional non-coding SNPs that might modulate function and/or expression of IL28B. The role of the different IL28B alleles on gene expression and cytokine function has not yet been established. CONCLUSIONS: These findings provide strong genetic evidence for the influence of interferon-λ for both the natural and treatment-induced control of HCV infection, and support the further investigation of interferon-λ for the treatment of chronic hepatitis C. Furthermore, genetic testing before HCV therapy could provide important information towards an individualized HCV treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute infection with the hepatitis C virus (HCV) induces a wide range of innate and adaptive immune responses. A total of 20-50% of acutely HCV-infected individuals permanently control the virus, referred to as 'spontaneous hepatitis C clearance', while the infection progresses to chronic hepatitis C in the majority of cases. Numerous studies have examined host genetic determinants of hepatitis C infection outcome and revealed the influence of genetic polymorphisms of human leukocyte antigens, killer immunoglobulin-like receptors, chemokines, interleukins and interferon-stimulated genes on spontaneous hepatitis C clearance. However, most genetic associations were not confirmed in independent cohorts, revealed opposing results in diverse populations or were limited by varying definitions of hepatitis C outcomes or small sample size. Coordinated efforts are needed in the search for key genetic determinants of spontaneous hepatitis C clearance that include well-conducted candidate genetic and genome-wide association studies, direct sequencing and follow-up functional studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The environment of parasites is determined largely by their hosts. Variation in host quality, abundance and spatial distribution affects the balance between selection within hosts and gene flow between hosts, and this should determine the evolution of a parasite's host-range and its propensity to locally adapt and speciate. 2. We investigated the relationship between host spatial distribution and (1) parasite host range, (2) parasite mobility and (3) parasite geographical range, in a comparative study of a major group of avian ectoparasites, the birds fleas belonging to the Ceratophyllidae (Siphonaptera). 3. Flea species parasitizing colonial birds had narrower host ranges than those infesting territorial nesters or birds with an intermediate level of nest aggregation. 4. The potential mobility and geographical ranges of fleas decreased with increasing level of aggregation of their hosts and increased with the fleas' host ranges. 5. Birds with aggregated nest distribution harboured more flea species mainly due to a larger number of specialists than solitarily nesting hosts. 6. These results emphasize the importance of host spatial distribution for the evolution of specialization, and for local adaptation and speciation in Ceratophyllid bird fleas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Leishmaniasis is a common parasitic disease in Southern Europe, caused by Leishmania infantum. The failures of current treatment with pentavalent antimonials are partially attributable to the emergence of antimony-resistant Leishmania strains. This study analyses the in vitro susceptibility to pentavalent antimony of intracellular amastigotes from a range of L. infantum strains, derived from the same infected animal, during in vitro and in vivo passages and after host treatment with meglumine antimoniate. Results: SbV-IC50 values for strains from two distinct isolates from the same host and one stock after two years of culture in NNN medium and posterior passage to hamster were similar (5.0 ± 0.2; 4.9 ± 0.2 and 4.4 ± 0.1 mgSbV/L, respectively). In contrast, a significant difference (P < 0.01, t test) was observed between the mean SbV-IC50 values in the stocks obtained before and after treatment of hosts with meglumine antimoniate (4.7 ± 0.4 mgSbV/L vs. 7.7 ± 1.5 mgSbV/L). Drug-resistance after drug pressure in experimentally infected dogs increased over repeated drug administration (6.4 ± 0.5 mgSbV/L after first treatment vs. 8.6 ± 1.4 mgSbV/L after the second) (P < 0.01, t test). Conclusions: These results confirm previous observations on strains from Leishmania/HIV co-infected patients and indicate the effect of the increasing use of antimony derivatives for treatment of canine leishmaniasis in endemic areas on the emergence of Leishmania antimony-resistant strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8'085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4'974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the "amino acid metabolism" category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a major agent of bovine mastitis. The concomitant emergence of pig-associated methicillin-resistant S. aureus (MRSA) in human carriage and infection requires a reexamination of the host range and specificity of human- and cow-associated S. aureus strains, something which has not been systematically studied previously. The genetic relatedness of 500 S. aureus isolates from bovine mastitis cases, 57 isolates from nasal carriage of farmers, and 133 isolates from nonfarmers was determined by amplified fragment length polymorphism (AFLP) analysis and spa typing. Multilocus sequence typing (MLST) was conducted on a subset of isolates to match AFLP clusters with MLST clonal complexes (CCs). This data set allowed us to study host range and host specificity and to estimate the extent of bovine-to-human transmission. The genotype compositions of S. aureus isolates from farmers and nonfarmers were very similar, while the mastitis isolates were quite distinct. Overall, transmission was low, but specific genotypes did show increased cow-to-human transmission. Unexpectedly, more than one-third of mastitis isolates belonged to CC8, a lineage which has not been considered to be bovine mastitis associated, but it is well known from human carriage and infection (i.e., USA300). Despite the fact that we did detect some transmission of other genotypes from cows to farmers, no transmission of CC8 isolates to farmers was detected, except for one tentative case. This was despite the close genetic relatedness of mastitis CC8 strains to nonfarmer carriage strains. These results suggest that the emergence of the new bovine-adapted genotype was due to a recent host shift from humans to cows concurrent with a loss of the ability to colonize humans. More broadly, our results indicate that host specificity is a lineage-specific trait that can rapidly evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive candidiasis and aspergillosis are major complications in surgical and onco-hematological patients, and still associated with an important morbidity and mortality. A large number of studies highlighted the potential role of host genetic polymorphisms that may influence susceptibility to fungal pathogens, but many were limited by insufficient statistical power, problematic design, and/or lack of replication. However, some relevant polymorphisms are now emerging from well-conducted studies whose associations have been replicated and/or are supported by strong biological evidence. Such polymorphisms together with other biomarkers may play a role in the prediction, diagnosis, and management of severe fungal infections in high-risk patients in the coming years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite (Spinturnix bechsteini) and compared it to that of its social host, the Bechstein's bat (Myotis bechsteinii). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yearly administration of the influenza vaccine is the main strategy to prevent influenza in immunocompromised patients. Here, we reviewed the recent literature regarding the clinical significance of the influenza virus infection, as well as the immunogenicity and safety of the influenza vaccine in HIV‑infected individuals, solid-organ and stem-cell transplant recipients and patients receiving biological agents. Epidemiological data produced during the 2009 influenza pandemic have confirmed that immunocompromised patients remain at high risk of influenza-associated complications, namely viral and bacterial pneumonia, hospitalization and even death. The immunogenicity of the influenza vaccine is overall reduced in immunocompromised patients, although a significant clinical protection from influenza is expected to be obtained with vaccination. Influenza vaccination is safe in immunocompromised patients. The efficacy of novel strategies to improve the immunogenicity to the vaccine, such as the use of adjuvanted vaccines, boosting doses and intradermal vaccination, needs to be validated in appropriately powered clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A resistência a diversas moléstias fúngicas do trigo tem sido transferida de espécies perenes da tribo Triticeae, mas o híbrido produzido pelo cruzamento intergenérico apresenta embrião abortivo. Embora a técnica de resgate e cultivo in vitro destes embriões já seja amplamente utilizada, sua eficiência ainda é muito baixa. Este trabalho objetivou a obtenção de progênies de retrocruzamentos em híbrido F1 (2n=56), proveniente do cruzamento de trigo (Triticum aestivum) (2n=42) com Agropyron elongatum (2n=70), utilizando-se a técnica de cultivo in vitro dos embriões imaturos. Partindo-se do material perene na geração F1, utilizou-se o trigo como parental recorrente nos retrocruzamentos. A eficiência da polinização foi de 6% no primeiro retrocruzamento (RC1) e de 12,4% no segundo (RC2). As plantas do RC1 foram viabilizadas pelo resgate e cultivo in vitro dos embriões imaturos utilizando- se o meio batata-regeneração, com adição de vitaminas. De 22 sementes, 18 embriões foram resgatados e cultivados in vitro, originando 12 plântulas. Desses embriões, 50% foram normais, 27,8% apresentaram tamanho reduzido, 16,7% foram deformados e 5,5% apresentaram desenvolvimento retardado. A eficiência do cultivo dos embriões na regeneração de plântulas foi de 66,6%. Tal resultado indica que a técnica de resgate e o meio de cultura utilizados foram eficientes para o cultivo e regeneração dos embriões híbridos, obtendo progênies viáveis de retrocruzamentos a partir de híbridos intergenéricos, nas condições realizadas.