1000 resultados para ice cores


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Greenland ice core records indicate that the last deglaciation (~7-21 ka) was punctuated by numerous abrupt climate reversals involving temperature changes of up to 5°C-10°C within decades. However, the cause behind many of these events is uncertain. A likely candidate may have been the input of deglacial meltwater, from the Laurentide ice sheet (LIS), to the high-latitude North Atlantic, which disrupted ocean circulation and triggered cooling. Yet the direct evidence of meltwater input for many of these events has so far remained undetected. In this study, we use the geochemistry (paired Mg/Ca-d18O) of planktonic foraminifera from a sediment core south of Iceland to reconstruct the input of freshwater to the northern North Atlantic during abrupt deglacial climate change. Our record can be placed on the same timescale as ice cores and therefore provides a direct comparison between the timing of freshwater input and climate variability. Meltwater events coincide with the onset of numerous cold intervals, including the Older Dryas (14.0 ka), two events during the Allerød (at ~13.1 and 13.6 ka), the Younger Dryas (12.9 ka), and the 8.2 ka event, supporting a causal link between these abrupt climate changes and meltwater input. During the Bølling-Allerød warm interval, we find that periods of warming are associated with an increased meltwater flux to the northern North Atlantic, which in turn induces abrupt cooling, a cessation in meltwater input, and eventual climate recovery. This implies that feedback between climate and meltwater input produced a highly variable climate. A comparison to published data sets suggests that this feedback likely included fluctuations in the southern margin of the LIS causing rerouting of LIS meltwater between southern and eastern drainage outlets, as proposed by Clark et al. (2001, doi:10.1126/science.1062517).

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: