853 resultados para health behavior models
Resumo:
Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
Background: Mass migration to Asian cities is a defining phenomenon of the present age, as hundreds of millions of people move from rural areas or between cities in search of economic prosperity. Although many do prosper, large numbers of people experience significant social disadvantage. This is especially the case among poorly educated, migrant unskilled unregistered male laborers who do much of the manual work throughout the cities. These men are at significant risk for many health problems, including HIV infection. However, to date there has been little research in developing countries to explain the determinants of this risk, and thereby to suggest feasible preventive strategies. Objectives and Methodology: Using combined qualitative and quantitative methods, the aim of this study was to explore the social contexts that affect health vulnerabilities and to develop conceptual models to predict risk behaviors for HIV [illicit drug use, unsafe sex, and non-testing for HIV] among male street laborers in Hanoi, Vietnam. Qualitative Research: Sixteen qualitative interviews revealed a complex variety of life experiences, beliefs and knowledge deficits that render these mostly poor and minimally educated men vulnerable to health problems including HIV infection. This study formed a conceptual model of numerous stressors related to migrants’ life experiences in urban space, including physical, financial and social factors. A wide range of coping strategies were adopted to deal with stressors – including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. These men reported difficulty in coping with stressors because they had weak social networks and lacked support from formal systems. A second conceptual model emerged that highlighted equivalent influences of individual psychological factors, social integration, social barriers, and accessibility regarding drug use and sexual risk behavior. Psychological dimensions such as tedium, distress, fatalism and revenge, were important. There were strong effects of collective decision-making and fear of social isolation on shaping risk behaviors. These exploratory qualitative interviews helped to develop a culturally appropriate instrument for the quantitative survey and informed theoretical models of the factors that affect risk behaviors for HIV infection. Quantitative Research: The Information-Motivation-Behavioral Skills (IMB) model was adopted as the theoretical framework for a large-scale survey. It was modified to suit the contexts of these Vietnamese men. By doing a social mapping technique, 450 male street laborers were interviewed in Hanoi, Vietnam. The survey revealed that the risk of acquiring and transmitting HIV was high among these men. One in every 12 men reported homosexual or bisexual behavior. These men on average had 3 partners within the preceding year, and condom use was inconsistent. One third had had sex with commercial sex workers (CSW) and only 30% of them reported condom use; 17% used illicit drugs sometimes, with 66.7% of them frequently sharing injecting equipment with peers. Despite the risks, only 19.8% of men had been tested for HIV during the previous 12 months. These men have limited HIV knowledge and only moderate motivation and perceived behavioral skills for protective behavior. Although rural-to-urban migration was not associated with sexual risk behavior, three elements of the IMB model and depression associated with the process of mobility were significant determinants of sexual behavior. A modified model that incorporated IMB elements and psychosocial stress was found to be a better fit than the original IMB model alone in predicting protected sex behavior among the men. Men who were less psychologically and socially stressed, better informed and motivated for HIV prevention were more likely to demonstrate behavioral skills, and in turn were more likely to engage in safer sexual behavior. With regard to drug use, although the conventional model accounted for slightly less variance than the modified IMB model, data were of better fit for the conventional model. Multivariate analyses revealed that men who originated from urban areas, those who were homo- or bi-sexually identified and had better knowledge and skills for HIV prevention were more likely to access HIV testing, while men who had more sexual partners and those who did not use a condom for sex with CSW were least likely to take a test. The modified IMB model provided a better fit than the conventional model, as it explained a greater variance in HIV testing. Conclusions and Implications: This research helps to highlight a potential hidden HIV epidemic among street male, unskilled, unregistered laborers. This group has multiple vulnerabilities to HIV infection through both their partners and peers. However, most do not know their HIV status and have limited knowledge about preventing infection. This is the first application of a modified IMB model of risk behaviors for HIV such as drug use, condom use, and uptake of HIV testing to research with male street laborers in urban settings. The study demonstrated that while the extended IMB model had better fit than the conventional version in explaining the behaviors of safe sex and HIV testing, it was not so for drug use. The results provide interesting directions for future research and suggest ways to effectively design intervention strategies. The findings should shed light on culturally appropriate HIV preventive education and support programs for these men. As Vietnam has much in common with other developing countries in Southeast Asia, this research provides evidence for policy and practice that may be useful for public health systems in similar countries.
Resumo:
Child abuse and neglect is prevalent and entails significant costs to children, families and society. Teachers are responsible for significant proportions of official notifications to statutory child protection agencies. Hence, their accurate and appropriate reporting is crucial for well-functioning child protection systems. Approximately one-quarter of Australian teachers indicate never detecting a case of child maltreatment across their careers, while a further 13-15% admit to not reporting suspected cases in some circumstances. The detection and reporting of child abuse and neglect are complex decision-making behaviors, influenced by: the nature of the maltreatment itself; the characteristics of the teacher; the school environment; and the broader legislative and policy environment. In this chapter, the authors provide a background to teachers’ involvement in detecting and reporting child abuse and neglect, and an overview of the role of teachers is provided. Results are presented from three Australian studies that examine the unique contributions of: case; teacher; and contextual characteristics to detection and reporting behaviors. The authors conclude by highlighting the key implications for enhancing teacher training in child abuse and neglect, and outline future research directions.
Resumo:
Background Expectations held by patients and health professionals may affect treatment choices and participation (by both patients and health professionals) in therapeutic interventions in contemporary patient-centered healthcare environments. If patients in rehabilitation settings overestimate their discharge health-related quality of life, they may become despondent as their progress falls short of their expectations. On the other hand, underestimating their discharge health-related quality of life may lead to a lack of motivation to participate in therapies if they do not perceive likely benefit. There is a scarcity of empirical evidence evaluating whether patients' expectations of future health states are accurate. The purpose of this study is to evaluate the accuracy with which older patients admitted for subacute in-hospital rehabilitation can anticipate their discharge health-related quality of life. Methods A prospective longitudinal cohort investigation of agreement between patients' anticipated discharge health-related quality of life (as reported on the EQ-5D instrument at admission to a rehabilitation unit) and their actual self-reported health-related quality of life at the time of discharge from this unit was undertaken. The mini-mental state examination was used as an indicator of patients' cognitive ability. Results Overall, 232(85%) patients had all assessment data completed and were included in analysis. Kappa scores ranged from 0.42-0.68 across the five EQ-5D domains and two patient cognition groups. The percentage of exact correct matches within each domain ranged from 69% to 85% across domains and cognition groups. Overall 40% of participants in each cognition group correctly anticipated all of their self-reported discharge EQ-5D domain responses. Conclusions Patients admitted for subacute in-hospital rehabilitation were able to anticipate the discharge health-related quality of life on the EQ-5D instrument with a moderate level of accuracy. This finding adds to the foundational empirical work supporting joint treatment decision making and patient-centered models of care during rehabilitation following acute illness or injury. Accurate patient expectations of the impact of treatment (or disease progression) on future health-related related quality of life is likely to allow patients and health professionals to successfully target interventions to priority areas where meaningful gains can be achieved.
Resumo:
Recent studies have implicated the hypocretin/orexinergic system in reward-seeking behavior. Almorexant, a dual orexin/hypocretin R1 and R2 receptor antagonist, has proven effective in preclinical studies in promoting sleep in animal models and was in Phase III clinical trials for sleep disorders. The present study combines behavioral assays with in vitro biochemical and electrophysiological techniques to elucidate the role of almorexant in ethanol and sucrose intake. Using an operant self-administration paradigm, we demonstrate that systemic administration of almorexant decreased operant selfadministration of both 20% ethanol and 5% sucrose. We further demonstrate that intraventral tegmental area (VTA) infusions, but not intra substantia nigra infusions, of almorexant reduced ethanol self-administration. Extracellular recordings performed in VTA neurons revealed that orexin-A increased firing and this enhancement of firing was blocked by almorexant. The results demonstrate that orexin/hypocretin receptors in distinct brain regions regulate ethanol and sucrose mediated behaviors.
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
OBJECTIVE: To identify the factors associated with infertility, seeking advice and treatment with fertility hormones and/or in vitro fertilisation (IVF) among a general population of women. METHODS: Participants in the Australian Longitudinal Study on Women's Health aged 28-33 years in 2006 had completed up to four mailed surveys over 10 years (n=9,145). Parsimonious multivariate logistic regression was used to identify the socio-demographic, biological (including reproductive histories), and behavioural factors associated with infertility, advice and hormonal/IVF treatment. RESULTS: For women who had tried to conceive or had been pregnant (n=5,936), 17% reported infertility. Among women with infertility (n=1031), 72% (n=728) sought advice but only 50% (n=356) used hormonal/IVF treatment. Women had higher odds of infertility when: they had never been pregnant (OR=7.2, 95% CI 5.6-9.1) or had a history of miscarriage (OR range=1.5-4.0) than those who had given birth (and never had a miscarriage or termination). CONCLUSION: Only one-third of women with infertility used hormonal and/or IVF treatment. Women with PCOS or endometriosis were the most proactive in having sought advice and used hormonal/IVF treatment. IMPLICATIONS: Raised awareness of age-related declining fertility is important for partnered women aged approximately 30 years to encourage pregnancy during their prime reproductive years and reduce the risk of infertility.
Resumo:
Purpose. To determine whether Australia's Walk to Work Day media campaign resulted in behavioural change among targeted groups. Methods. Pre- and postcampaign telephone surveys of a cohort of adults aged 18 to 65 years (n = 1100, 55% response rate) were randomly sampled from Australian major melropolitan areas. Tests for dependent samples were applied (McNemax chi(2) or paired t-test). Results. Among participants who did not usually actively commute to work was a significant decrease in car only use an increase in walking combined with public transport. Among those who were employed was a significant increase in total time walking (+16 min/wk; t [780] = 2.04, p < .05) and in other moderate physical activity (+120 min/wk; t [1087] = 4.76, p < .005), resulting in a significant decrease in the proportion who were inactive (chi(2) (1) = 6.1, p < .05). Conclusion. Although nonexperimental, the Walk to Work Day initiative elicited short-term changes in targeted behaviors among target groups. Reinforcement by integrating worksite health promotion strategies may be required for sustained effects.
Resumo:
What are the most appropriate methodological approaches for researching the psychosocial determinants of health and wellbeing among young people from refugee backgrounds over the resettlement period? What kinds of research models can involve young people in meaningful reflections on their lives and futures while simultaneously yielding valid data to inform services and policy? This paper reports on the methods developed for a longitudinal study of health and wellbeing among young people from refugee backgrounds in Melbourne, Australia. The study involves 100 newly-arrived young people 12 to 18 years of age, and employs a combination of qualitative and quantitative methods implemented as a series of activities carried out by participants in personalized settlement journals. This paper highlights the need to think outside the box of traditional qualitative and/or quantitative approaches for social research into refugee youth health and illustrates how integrated approaches can produce information that is meaningful to policy makers, service providers and to the young people themselves.
Resumo:
Dengue fever is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.
Resumo:
Combating unhealthy weight gain is a major public health and clinical management issue. The extent of research into the etiology and pathophysiology of obesity has produced a wealth of evidence regarding the contributing factors. While aspects of the environment are ‘obesogenic’, weight gain is not inevitable for every individual. What then explains potentially unhealthy weight gain in individuals living within an environment where others remain lean? In this paper we explore the biological compensation that acts in response to a reduced energy intake by reducing energy needs, in order to defend against weight loss. We then examine the evidence that there is only a weak biological compensation to surplus energy supply, and that this allows behavior to drive weight gain. The extent to which biology impacts behavior is also considered.