910 resultados para grain stacking
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mm phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mm phosphate - 10 mm borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.
Resumo:
Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport
Resumo:
A bar on the Brazos River near Calvert, Texas, has been analyzed in order to determine the geologic meaning of certain grain size parameters and to study the behavior of the size fractions with transport. The bar consists of a strongly bimodal mixture of pebble gravel and medium to fine sand; there is a lack of material in the range of 0.5 to 2 mm, because the source does not supply particles of this size. The size distributions of the two modes, which were established in the parent deposits, are nearly invariant over the bar because the present environment of deposition only affects the relative proportions of the two modes, not the grain size properties of the modes themselves. Two proportions are most common; the sediment either contains no gravel or else contains about 60% gravel. Three sediment types with characteristic bedding features occur on the bar in constant stratigraphic order, with the coarsest at the base. Statistical analysis of the data is based on a series of grain size parameters modified from those of Inman (1952) to provide a more detailed coverage of non-normal size curves. Unimodal sediments have nearly normal curves as defined by their skewness and kurtosis. Non-normal kurtosis and skewness values are held to be the identifying characteristics of bimodal sediments even where such modes are not evident in frequency curves. The relative proportions of each mode define a systematic series of changes in numerical properties; mean size, standard deviation and skewness are shown to be linked in a helical trend, which is believed to be applicable to many other sedimentary suites. The equations of the helix may be characteristic of certain environments. Kurtosis values show rhythmic pulsations along the helix and are diagnostic of two-generation sediments.
Resumo:
National Natural Science Foundation of China [70673097]
Efficiency and sustainability analysis of grain production in Jiangsu and Shaanxi Provinces of China
Resumo:
Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.
Resumo:
Mg-8Gd-1Dy-0.3Zn (wt.%) alloy was prepared by high-pressure die-casting technique. The thermal stability, mechanical properties at temperature range from room temperature to 573 K and strengthening mechanism was investigated. The results showed that the die-cast state alloy was mainly composed of fine cellular equiaxed grain. The fine porosity-free skin region was related to the aggregation of rare earth elements. The long lamellar-shaped stacking compound containing Zn and polygon-shaped precipitate were observed along the grain boundaries. The die-cast sample exhibited high mechanical properties and good thermal stability until 523 K.