951 resultados para glycosyl phosphatidylinositol anchor (GPI)
Resumo:
The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
Resumo:
The conversion of cellular prion protein (PrPc), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.
Resumo:
Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.
Resumo:
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy.
Resumo:
Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed. Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control). Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Inositol is a polyalcohol required for the proper formation of cell membranes. In the body, its plays an important role in the transmission of nerve impulses, its also helps in the transporting of fats within the body. In mammals, inositol exists as phosphorylated derivatives, various phosphoinositides, and in its free form. Agonist stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is the first step in the transmembrane signalling mechanism when cells respond to external stimuli. Under control of activated phospholipase C (PLC) via G-protein, two second messengers D-myo-inositol 1,4,5-triphosphate [Ins(1,4,5)P3] and diacylglycerol are released into the cell. From Ins(1,4,5)P3, enzymatic process under phosphatases or kinases control affords subsequent inositol phosphate metabolites. During the last decade the synthesis of modified inositol phosphate derivatives has been strongly investigated. This paper reviews principal aspects about synthesis and biological functions of these biomolecules.
Resumo:
The present paper describes the chemical composition and biological activities of artichoke cultivated in Brazil. Our studies demonstrated that glycosyl flavonoids (cynaroside and scolymoside), are the major constituents, along with cynaropicrin, a sesquiterpene lactone, and the triterpene lupeol. Cynarin, which is the main compound described for artichoke, was detected in very low concentration. Hexanic fraction exhibited considerable cytotoxicity and diuretic activities.
Resumo:
A mixture containing sitosterol and stigmasterol; a new triterpene 3-epi-ursolic acid; another triterpene mixture comprising a-amyrin, b-amyrin and lupeol; verbascoside, a phenylpropanoid glycoside; and lespedin, a glycosyl flavonoid, were isolated. The less polar compounds (steroids and triterpenoids) were isolated from the hexane partition of the crude ethanolic extract while the more polar ones (phenylpropanoid glycoside and glycosyl flavonoid) were isolated from the ethyl acetate partition of the same extract. The structures of all compounds were established using modern spectrometric methods of elucidation. The spectroscopic data of Lespedin, a rare dirhamnosylflavonol with hypotensor activity and of the triterpene, 3-epi-ursolic acid, are also reported.
Resumo:
The present paper describes the phytochemical investigation and biological activities of the chloroform, ethyl acetate and methanol extracts of leaf decocts of M. truncata Reiss (Celastraceae). Our studies afforded two flavonoid glycosides, quercetin-3-O-rhamnopyranosyl-O-glucopyranosyl- O-rhamnopyranosyl-O-galactopyranoside (1) and kampferol-3-O-rhamnopyranosyl-O-glucopyranosyl- O-rhamnopyranosyl-O-galactopyranoside (2) from the methanolic extract and dulcitol (3) from the ethyl acetate extract. Ethyl acetate and methanol extracts exhibited considerable antiulcerogenic and analgesic activities. The results of the phytochemical studies suggest that the healing activity of methanol extracts can be related to the presence of glycosyl flavonoids.
Resumo:
Painelajittelu on yksi yleisimmistä yksikköprosesseista paperin ja sellun valmistuksessa. Suurelta osin lajittimet toimivat niille asetettujen vaatimusten mukaisesti, mutta joissakin tapauksissa lajittimissa saattaa esiintyä ei-toivottavaa kuitujen kasautumista sekä kehräymän muodostusta. Niiden seurauksena lajittimien kapasiteetti alenee ja lajittelutulos heikkenee. Tämän työn tarkoituksena on uutta kuvantamistekniikkaa hyödyntäen selvittää miten kehräymät ja kuitukasaumat syntyvät painelajittimen sihtipinnalla ja miten retentioaineen syöttö sihdin ympäristössä vaikuttaa niiden syntyyn. Työn kirjallisuusosassa tarkastellaan painelajittimen toimintaa, rakennetta sekä lyhyen kierron konesihdin erityispiirteitä. Lisäksi tarkastellaan retentiokemikaalien käyttäytymistä leikkausvoimien alaisuudessa ja kuitukehräymien syntyä painelajittimissa. Kokeellisessa osassa on raportoitu kuvantamisjärjestelmällä saatuja tuloksia sekä esitetään havaintoja kehräymien ja kuitukasaumien synnystä ja niiden vaikutuksista painelajittimen toimintaan. Kuvausten perusteella voidaan sanoa, että kehräymän syntyminen sihdissä vaatii aina jonkinlaisen kuitukasauman olemassaoloa. Tällaista alkukasaumaa tarvitaan, jotta kuidut voivat ankkuroitua siihen kiinni ja johon kiinnittyneenä kuidut alkavat pyöriä virtauksessa muodostaen kehräymää. Kuitukasauman muodostuminen painelajittimessa johtuu pääosin sihdissä olevasta epäjatkuvuuskohdasta, massassa olevista epäpuhtauksista ja kuituflokeista jotka jäävät kiinni sihtipinnan aukkoihin tai lajittimen kapasiteetin ylittymisestä. Kehräymän syntyä kasauman jäljessä voidaan pitää enemmän sääntönä kuin poikkeuksena, mutta kehräytyminen on vähäisempää reikäsihdillä kuin rakosihdillä. Silloituspolymeerillä flokattu massa ei muodosta herkemmin kuitukasaumia sihtipintaan verrattuna flokkaamattomaan massaan. Lajiteltavan massan sakeuden nosto vähentää kuitukasaumien ja kehräymien syntyä. Kuitukasaumien ja kehräymien välttämiseksi on tärkeää, että sihtiä ei ajeta suunniteltua mitoitusaluetta suuremmilla tuotannoilla tai virtauksilla.
Resumo:
This work describes the synthesis of the glycosylated amino acids αGlcNAc-Thr, βGlcNAc-Thr and αLacNAc-Thr by the glycosylation reaction of the amino acid threonine with the corresponding glycosyl donors αGlcNAcCl and αLacN3Cl. The glycosylated amino acids containing the sugar units α-D-GlcNAc and α-D-LacNAc O-linked to threonine amino acids are related to O-glycans found in mucins of the parasite Trypanosoma cruzi, while the corresponding β-D-GlcNAc isomer is involved in cellular signaling events.