999 resultados para geochimica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (d44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in d44/40Ca (~0.3 per mill) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between d44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 µmol/m**2/h, respectively. The lower d44/40Ca observed at 29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of d44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the d44/40Ca of the reservoir is constrained as -0.2 per mill relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on d44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the eastern flank of the Juan de Fuca Ridge, reaction between upwelling basement fluid and sediment alters hydrothermal fluxes of Ca, SiO2(aq), SO4, PO4, NH4, and alkalinity. We used the Global Implicit Multicomponent Reactive Transport (GIMRT) code to model the processes occurring in the sediment column (diagenesis, sediment burial, fluid advection, and multicomponent diffusion) and to estimate net seafloor fluxes of solutes. Within the sediment section, the reactions controlling the concentrations of the solutes listed above are organic matter degradation via SO4 reduction, dissolution of amorphous silica, reductive dissolution of amorphous Fe(III)-(hydr)oxide, and precipitation of calcite, carbonate fluorapatite, and amorphous Fe(II)-sulfide. Rates of specific discharge estimated from pore-water Mg profiles are 2 to 3 mm/yr. At this site the basement hydrothermal system is a source of NH4, SiO2(aq), and Ca, and a sink of SO4, PO4, and alkalinity. Reaction within the sediment column increases the hydrothermal sources of NH4 and SiO2(aq), increases the hydrothermal sinks of SO4 and PO4, and decreases the hydrothermal source of Ca. Reaction within the sediment column has a spatially variable effect on the hydrothermal flux of alkalinity. Because the model we used was capable of simulating the observed pore-water chemistry by using mechanistic descriptions of the biogeochemical processes occurring in the sediment column, it could be used to examine the physical controls on hydrothermal fluxes of solutes in this setting. Two series of simulations in which we varied fluid flow rate (1 to 100 mm/yr) and sediment thickness (10 to 100 m) predict that given the reactions modeled in this study, the sediment section will contribute most significantly to fluxes of SO4 and NH4 at slow flow rates and intermediate sediment thickness and to fluxes of SiO2(aq) at slow flow rates and large sediment thickness. Reaction within the sediment section could approximately double the hydrothermal sink of PO4 over a range of flow rates and sediment thickness, and could slightly decrease (by

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO3[2-]] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 +/- 7% per 100 µmol [CO3[2-]] kg**-1, as seawater [CO3[2-]] increases from 110 to 470 µmol kg**-1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ~+40% at the same environmental [CO3[2-]]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO3[2-]] was 110 +/- 70 µmol kg**-1 and 80 +/- 40 µmol kg**-1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO3[2-]] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean's carbonate concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the stable carbon isotopic composition of bulk organic matter (POC), alkenones, sterols, fatty acids, and phytol in the coccolithophorid Emiliania huxleyi grown in dilute batch cultures over a wide range of CO2 concentrations (1.1-53.5 micromol L-1). The carbon isotope fractionation of POC (POC) varied by ca. 7 per mil and was positively correlated with aqueous CO2 concentration [CO2aq]. While this result confirms general trends observed for the same alga grown in nitrogen-limited chemostat cultures, considerable differences were obtained in absolute values of POC and in the slope of the relationship of POC with growth rate and [CO2aq]. Also, a significantly greater offset was obtained between the delta13C of alkenones and bulk organic matter in this study compared with previous work (5.4, cf. 3.8 per mil). This suggests that the magnitude of the isotope offset may depend on growth conditions. Relative to POC, individual fatty acids were depleted in 13C by 2.3 per mil to 4.1 per mil, phytol was depleted in 13C by 1.9 per mil, and the major sterol 24-methylcholesta-5,22E-dien-3beta-ol was depleted in 13C by 8.5 per mil. This large spread of delta13C values for different lipid classes in the same alga indicates the need for caution in organic geochemical studies when assigning different sources to lipids that might have delta13C values differing by just a few per mil. Increases in [CO2aq] led to dramatic increases in the alkenone contents per cell and as a proportion of organic carbon, but there was no systematic effect on values of U37k- used for reconstructions of paleo sea surface temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 773 samples were analysed for dissolved manganese (Mn) in the Arctic Ocean aboard R.V. Polarstern during expedition ARK XXII/2 from 28 July until 07 October 2007 from Tromsø (Norway) to Bremerhaven. Concentrations of Mn were elevated in the surface layer with concentrations of up to 6 nM over the deep Basins and over 20 nM in the Laptev Sea. The general distribution of Mn through the water column is consistent with previous studies, but there are differences in the absolute concentrations that are most likely related to differences in sample area, sampling and filtration. The elevated concentrations of Mn in the surface layer are related to fresh water input. This was visible in the strong negative correlations observed between dissolved Mn and salinity. The correlation between Mn and salinity and the correlation between Mn and the quasi conservative trace water mass tracer PO4*, showed fluvial and melt water input and the Pacific and Atlantic origin of the surface waters. A large portion of the Mn delivered by the Arctic rivers is removed in the shelf seas and does not pass into the central basins. Most likely a benthic flux is at the origin of the elevated concentrations of Mn near the sediments in the Barents and Kara Seas. These elevated concentrations of Mn apparently affected the deep basins as well, as maxima in the concentrations of Mn were observed that corresponded with lowered transmission over the continental slope. A maximum in the concentration of Mn in the deep basin corresponded with anomalies in light transmission, potential temperature and dissolved iron, confirming the hydrothermal origin. The hydrothermal plume was observed throughout the Nansen Basin and over the deep Gakkel Ridge around 2500 m depth and a smaller plume was observed around 3200 m. The concentration of Mn at the Mn maximum around 2500 m depth decreased exponentially, consistent with a first order scavenging model. The concentrations of Mn were extremely low in the deep Makarov Basin (~0.05 nM) and slightly higher in the Eurasian Basin (~0.1 nM) outside the influence of the hydrothermal activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ~0.1 (Ir, Ru) to ~5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (~30%) and fractional crystallization (~45%). First order approximations of the fractionation required to produce the KP basalts from an ~30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]_pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MBT-CBT proxy for the reconstruction of paleotemperatures and past soil pH is based on the distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids. The Methylation of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether (CBT) indices were developed to quantify these distributions, and significant empirical relations between these indices and annual mean air temperature (MAT) and/or soil pH were found in a large data set of soils. In this study, we extended this soil dataset to 278 globally distributed surface soils. Of these soils, 26% contains all nine brGDGTs, while in 63% of the soils the seven most common brGDGTs were detected, and the latter were selected for calibration purposes. This resulted in new transfer functions for the reconstruction of pH based on the CBT index: pH = 7.90-1.97 × CBT (r**2 = 0.70; RMSE = 0.8; n = 176), as well as for MAT based on the CBT index and methylation index based on the seven most abundant GDGTs (defined as MBT'): MAT = 0.81-5.67 × CBT + 31.0 × MBT' (r**2 = 0.59; RMSE = 5.0 °C; n = 176). The new transfer function for MAT has a substantially lower correlation coefficient than the original equation (r**2 = 0.77). To investigate possible improvement of the correlation, we used our extended global surface soil dataset to statistically derive the indices that best describe the relations of brGDGT composition with MAT and soil pH. These new indices, however, resulted in only a relatively minor increase in correlation coefficients, while they cannot be explained straightforwardly by physiological mechanisms. The large scatter in the calibration cannot be fully explained by local factors or by seasonality, but MAT for soils from arid regions are generally substantially (up to 20 °C) underestimated, suggesting that absolute brGDGT-based temperature records for these areas should be interpreted with caution. The applicability of the new MBT'-CBT calibration function was tested using previously published MBT-CBT-derived paleotemperature records covering the last deglaciation in Central Africa and East Asia, the Eocene-Oligocene boundary and the Paleocene-Eocene thermal maximum. The results show that trends remain similar in all records, but that absolute temperature estimates and the amplitude of temperature changes are lower for most records, and generally in better agreement with independent proxy data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the helium abundance and isotopic composition of seafloor carbonate sediments from the flanks of the Ontong Java Plateau, western equatorial Pacific Ocean (ODP Site 806). These results provide a two million year record of the burial flux of extraterrestrial 3He, which we believe is a proxy for the terrestrial accretion rate of interplanetary dust particles. The 3He burial flux prior to ~700 ka was relatively low, ~0.5 pcc/cm**2/kyr, but from 700 ka to the present, the burial flux gradually increased to a value of ~1.0 pcc/cm**2/kyr. 100 kyr periodicity in the 3He burial flux is apparent over the last 700 kyr and correlates with the oxygen isotope record of global climate, with high 3He burial fluxes associated with interglacial periods. This periodicity and phase are consistent with previous 3He measurements in North Atlantic sediments. Although 100 kyr periodicity in 3He burial flux is in agreement with recent predictions of the accretion rate of interplanetary dust based on a model of the orbital evolution of asteroidal debris, the measurements and predictions differ by one half cycle in phase. Nevertheless, our observations suggest the terrestrial accretion rate of interplanetary dust is controlled by orbital eccentricity and/or inclination relative to the solar-system invariable plane. Such control is a necessary but not sufficient condition for the hypothesis of that variations in extraterrestrial dust accretion modulates terrestrial climate with a 100 kyr period. We also identify several brief (<25 kyr) intervals of strongly enhanced 3He burial, possibly related to random and transient fluctuations in the accretion rate of asteroidal or cometary dust particles.