979 resultados para general managers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on "Wave Sensor Technologies" in St. Petersburg, Florida on March 7-9, 2007, hosted by the University of South Florida (USF) College of Marine Science, an ACT partner institution. The primary objectives of this workshop were to: 1) define the present state of wave measurement technologies, 2) identify the major impediments to their advancement, and 3) make strategic recommendations for future development and on the necessary steps to integrate wave measurement sensors into operational coastal ocean observing systems. The participants were from various sectors, including research scientists, technology developers and industry providers, and technology users, such as operational coastal managers and coastal decision makers. Waves consistently are ranked as a critical variable for numerous coastal issues, from maritime transportation to beach erosion to habitat restoration. For the purposes of this workshop, the participants focused on measuring "wind waves" (i.e., waves on the water surface, generated by the wind, restored by gravity and existing between approximately 3 and 30-second periods), although it was recognized that a wide range of both forced and free waves exist on and in the oceans. Also, whereas the workshop put emphasis on the nearshore coastal component of wave measurements, the participants also stressed the importance of open ocean surface waves measurement. Wave sensor technologies that are presently available for both environments include bottom-mounted pressure gauges, surface following buoys, wave staffs, acoustic Doppler current profilers, and shore-based remote sensing radar instruments. One of the recurring themes of workshop discussions was the dichotomous nature of wave data users. The two separate groups, open ocean wave data users and the nearshore/coastal wave data users, have different requirements. Generally, the user requirements increase both in spatial/temporal resolution and precision as one moves closer to shore. Most ocean going mariners are adequately satisfied with measurements of wave period and height and a wave general direction. However, most coastal and nearshore users require at least the first five Fourier parameters ("First 5"): wave energy and the first four directional Fourier coefficients. Furthermore, wave research scientists would like sensors capable of providing measurements beyond the first four Fourier coefficients. It was debated whether or not high precision wave observations in one location can take the place of a less precise measurement at a different location. This could be accomplished by advancing wave models and using wave models to extend data to nearby areas. However, the consensus was that models are no substitution for in situ wave data.[PDF contains 26 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-organized Alliance for Coastal Technologies (ACT) and National Data Buoy Center (NDBC) Workshop "Meteorological Buoy Sensors Workshop" convened in Solomons, Maryland, April 19 to 21,2006, sponsored by the University of Maryland Center for Environmental Science (UMCES) Chesapeake Bay Laboratory (CBL), an ACT partner institution. Participants from various sectors including resource managers and industry representatives collaborated to focus on technologies and sensors that measure the near surface variables of wind speed and direction, barometric pressure, humidity and air temperature. The vendor list was accordingly targeted at companies that produced these types of sensors. The managers represented a cross section of federal, regional and academic marine observing interests from around the country. Workshop discussions focused on the challenges associated with making marine meteorological observations in general and problems that were specific to a particular variable. Discussions also explored methods to mitigate these challenges through the adoption of best practices, improved technologies and increased standardization. Some of the key workshop outcomes and recommendations included: 0cean.US should establish a committee devoted to observations. The committee would have a key role in developing observing standards. The community should adopt the target cost, reliability and performance standards drafted for a typical meteorological package to be used by a regional observing system. A forum should be established to allow users and manufacturers to share best practices for the employment of marine meteorological sensors. The ACT website would host the forum. Federal activities that evaluate meteorological sensors should make their results publicly available. ACT should extend their evaluation process to include meteorological sensors. A follow on workshop should be conducted that covers the observing of meteorological variables not addressed by this workshop. (pdf contains 18 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) held a Workshop on Sensor Technology for Assessing Groundwater-Surface Water Interactions in the Coastal Zone on March 7 to 9,2005 in Savannah, GA. The main goal of the workshop was to summarize the general parameters, which have been found to be useful in assessing groundwater-surface water (GW-SW) interactions in the coastal zone. The workshop participants (Appendix I) were specifically charged with identifying the types of sensor systems, if any, that have been used to obtain time-series data and to make known which parameters may be the most amenable to the development/application of sensor technology. The group consisted of researchers, industry representatives, and environmental managers. Four general recommendations were made: 1. Educate coastal managers and agencies on the importance of GW-SW interactions, keeping in mind that regulatory agencies are driven by a different set of rules than researchers: the focus is on understanding the significance of the problem and providing solutions. ACT could facilitate this process in two ways. First, given that the research literature on this subject is fairly diffuse, ACT could provide links from its web site to fact sheets or other literature. Second, ACT could organize a focused meeting for managers and/or agency groups. Encourage development of primary tools for quantifying flow. The most promising technology in this respect is flow meters designed for flux chambers, mainly because they should be simple to use and can be made relatively inexpensively. However, it should be kept in mind that they provide only point measurements and several would need to be deployed as a network in order to obtain reliable flow estimates. For evaluating system wide GW-SW interactions, tools that integrate the signal over large areas would be required. Suggestions include a user-friendly hydrogeologic models, keeping in mind that freshwater flow is not the entire story, or continuous radon monitors. Though the latter would be slightly more difficult to use in terms of background knowledge, such an instrument would be low power and easy to operate and maintain. ACT could facilitate this recommendation by identifying funding opportunities on its web site and/or performing evaluations of existing technologies that could be summarized on the web site. (pdf contains 18 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the economics of gasification facilities in general and IGCC power plants in particular. Regarding the prospects of these systems, passing the technological test is one thing, passing the economic test can be quite another. In this respect, traditional valuations assume constant input and/or output prices. Since this is hardly realistic, we allow for uncertainty in prices. We naturally look at the markets where many of the products involved are regularly traded. Futures markets on commodities are particularly useful for valuing uncertain future cash flows. Thus, revenues and variable costs can be assessed by means of sound financial concepts and actual market data. On the other hand, these complex systems provide a number of flexibility options (e.g., to choose among several inputs, outputs, modes of operation, etc.). Typically, flexibility contributes significantly to the overall value of real assets. Indeed, maximization of the asset value requires the optimal exercise of any flexibility option available. Yet the economic value of flexibility is elusive, the more so under (price) uncertainty. And the right choice of input fuels and/or output products is a main concern for the facility managers. As a particular application, we deal with the valuation of input flexibility. We follow the Real Options approach. In addition to economic variables, we also address technical and environmental issues such as energy efficiency, utility performance characteristics and emissions (note that carbon constraints are looming). Lastly, a brief introduction to some stochastic processes suitable for valuation purposes is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean observing has been recognized by the US Commission on Ocean Policy, the Ocean Research and Resources Advisory Panel, the Joint Ocean Commission Initiative, and many other ocean policy entities and initiatives as foundational to meeting the nation’s need for more effective coastal and ocean management. The Interim Report of the Interagency Task Force on Ocean Policy (September 2009) has called for strengthening the nation’s capacity for observing the nation’s ocean, coastal, and Great Lakes systems. (PDF contains 3 pages)