979 resultados para gene library


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic factors play an important role in the aetiology of Parkinson's disease (PD). We have screened nuclear genes encoding subunits of mitochondrial complex I for associations between single nucleotide polymorphisms (SNPs) and PD. Abnormal functioning of complex I is well documented in human PD. Moreover, toxicological inhibition of complex I can lead to parkinsonism in animals. Thus, commonly occurring variants in these genes could potentially influence complex I function and the risk of developing PD. A sub-set of 70 potential SNPs in 31 nuclear complex I genes were selected and association analysis was performed on 306 PD patients plus 321 unaffected control subjects. Genotyping was performed using the DASH method. There was no evidence that the examined SNPs were significant genetic risk factors for PD, although this initial screen could not exclude the possibility that other disease-influencing variations exist within these genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell surface mucins are complex glycoproteins expressed on the apical membrane surface of mucosal epithelial cells. In malignant epithelial cells they are thought to influence cell adhesion, and are clinical targets for tumor immunotherapy and serum tumor marker assays. We have compared expression of MUC1, MUC3, MUC4, MUC11, MUC12 and MUC13 mRNA in epithelial cancers and/or cell lines with non-malignant tissues. In non-malignant tissues, MUC3, 4, 11, 12 and 13 were expressed at highest levels in gastrointestinal tissues, whereas MUC1 was more widely distributed. Significant down-regulation of the MUC4, MUC12 and MUC13 genes was observed in colonic cancers compared with normal tissue, whereas MUC1 was upregulated. In rectal cancers, levels of all six mucin genes were not significantly different to those in normal rectal tissues. Both MUC1 and MUC4 were down-regulated in gastric cancers, whereas cancer and normal tissue levels were similar for MUC3, 11, 12 and 13. In esophageal cancers there was a general trend toward higher levels than in normal tissue for MUC1, 3, 12 and 13. In ovarian cancers MUC1 levels were very high, whereas only low levels of all other mucins were observed. We also report expression in renal cell carcinomas, bladder carcinomas and breast cancer cell lines. The reported expression profiles of the cell surface mucin gene family will help direct biological and clinical studies of these molecules in mucosal biology, and in malignant and inflammatory diseases of epithelial tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Low-Density Lipoprotein Receptor (LDLR) gene is a cell surface receptor that plays an important role in cholesterol homeostasis. We investigated the (TA)n polymorphism in exon 18 of the LDLR gene on chromosome 19p13.2 performing an association analysis in 244 typical migraine-affected patients, 151 suffering from migraine with aura (MA), 96 with migraine without aura (MO) and 244 unaffected controls. The populations consisted of Caucasians only, and controls were age- and sex-matched. The results showed no significant difference between groups for allele frequency distributions of the (TA)n polymorphism even after separation of the migraine-affected individuals into subgroups of MA and MO affected patients. This is in contradiction to Mochi et al. [Mochi M, Cevoli S, Cortelli P, Pierangeli G, Scapoli C, Soriani S, Montagna P. Investigation of an LDLR gene polymorphism (19p13.2) in susceptibility to migrane without aura. J Neurol Sci 2003; 213 (1-2): 7-10.] who found a positive association of this variant with MO. Our study discusses possible differences between the two studies and extends this research by investigating circulating cholesterol levels in a migraine-affected population. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacillus thuringiensis (Bt) transgenic cotton has shown changes of vegetative and reproductive growth characteristics. The objective of this study was to investigate the physiological change of nitrogen metabolism that related closely to the growth in Bt cotton cultivars. The study Was undertaken on two 131 transgenic cotton cultivars and their parents, one conventional (Xingyang822) and recurrent parent (Sumian No. 9), the other a hybrid (Kumian No. 1) and female parent (Yumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China. In the 2001 study, The results indicated that the Bt cotton cultivars were higher than their parents in leaf total nitrogen, free amino acid and soluble protein content, greater in NR and GPT activity, and lower in protease activity, during peak square and boll developing period. The biggest increase of total nitrogen was at peak boll period, which increased by 36.01 and 18.96% for Kumian No. I and Xingyang822, respectively. There were similar results for free amino acid and soluble protein content. The results showed further in 2002 study that NR activity increased dramatically at peak square and early boll open period, the biggest increase at early boll open period, with Kumian No. I and Xingyan,822 being 87.5 and 61.4% higher than their parent, respectively, the biggest increase of GPT activity was at peak boll period, with Kumian No. I and Xingyang822 being 39.1 and 29.1% higher than their parent, respectively. However, protease activity of Bt cultivars reduced significantly before flowering and early boll open period, the biggest decrease was before flowering period, with Kumian No. I being more than 30%, Xingyang822 being 26.5% at peak square period. Moreover, the boll total nitrogen content reduced sharply. The results suggest that the Bt cotton cultivars have higher intensity of leaf nitrogen metabolism than their parent, especially during square and boll development period. It is disadvantage for square development and earlier boll maturity under high nitrogen condition. The cultural practice should aim at reducing leaf nitrogen metabolic strength and keep the balance of vegetative and reproductive growth. (C) 2003 Elsevier B.V. All rights reserved.