941 resultados para formula scoring
Resumo:
The purpose of this paper is to summarize the outcomes of a detailed research study carried out as part of the fulfilment of a doctoral programme which examined the relationships between, and impacts of organisational culture on construction performance within a Hong Kong context. The research used a mixed methodology approach consisting of an organisational culture survey using an adapted validated and reliable measurement instrument (the Denison Organisational Culture Survey), mini-case studies in four Hong Kong construction companies and correlated the derived culture scores against performance scores measured by the Hong Kong Housing Department Performance Assessment Scoring System (PASS). The significance of the research was to advance knowledge of the importance of organisational culture strength as a performance driver in the construction industry and the further proof of the culture performance links using a set of measures of the latter which were not financially-based. The findings of the research make a contribution to theory by further validating the work by Denison (1990) and others, not only in that a successful link between organisational culture and performance was demonstrated, but it also identifies particular cultural factors in organisations that appear to be significantly responsible for achieving successful outcomes and reveals opportunities for further research into the organisational culture of construction companies Keywords: organisational culture, construction performance, business success.
Resumo:
Objective: The Brief Michigan Alcoholism Screening Test (bMAST) is a 10-item test derived from the 25-item Michigan Alcoholism Screening Test (MAST). It is widely used in the assessment of alcohol dependence. In the absence of previous validation studies, the principal aim of this study was to assess the validity and reliability of the bMAST as a measure of the severity of problem drinking. Method: There were 6,594 patients (4,854 men, 1,740 women) who had been referred for alcohol-use disorders to a hospital alcohol and drug service who voluntarily participated in this study. Results: An exploratory factor analysis defined a two-factor solution, consisting of Perception of Current Drinking and Drinking Consequences factors. Structural equation modeling confirmed that the fit of a nine-item, two-factor model was superior to the original one-factor model. Concurrent validity was assessed through simultaneous administration of the Alcohol Use Disorders Identification Test (AUDIT) and associations with alcohol consumption and clinically assessed features of alcohol dependence. The two-factor bMAST model showed moderate correlations with the AUDIT. The two-factor bMAST and AUDIT were similarly associated with quantity of alcohol consumption and clinically assessed dependence severity features. No differences were observed between the existing weighted scoring system and the proposed simple scoring system. Conclusions: In this study, both the existing bMAST total score and the two-factor model identified were as effective as the AUDIT in assessing problem drinking severity. There are additional advantages of employing the two-factor bMAST in the assessment and treatment planning of patients seeking treatment for alcohol-use disorders. (J. Stud. Alcohol Drugs 68: 771-779,2007)
Resumo:
The Raman and infrared spectrum of the antimonate mineral stibiconite Sb3+Sb5+2O6(OH) were used to define aspects of the molecular structure of the mineral. Bands attributable to water, OH stretching and bending and SbO stretching and bending were assigned. The mineral has been shown to contain both calcium and water and the formula is probably best written (Sb3+,Ca)ySb5+2-x(O,OH,H2O)6-7 where y approaches 1 and x varies from 0 to 1. Infrared spectroscopy complimented with thermogravimetric analysis proves the presence of water in the stibiconite structure. The mineral stibiconite is formed through replacement of the sulphur in stibnite. No Raman or infrared bands attributable to stibnite were identified in the spectra.
Resumo:
The mineral geminite, an hydrated hydroxy-arsenate mineral of formula Cu(AsO3OH)•H2O, has been studied by Raman and infrared spectroscopy. Two minerals from different origins were investigated and the spectra proved quite similar. In the Raman spectra of geminite, four bands are observed at 813, 843, 853 and 885 cm-1. The assignment of these bands is as follows: (a) The band at 853 cm-1 is assigned to the AsO43- ν1 symmetric stretching mode (b) the band at 885 cm-1 is assigned to the AsO3OH2- ν1 symmetric stretching mode (c) the band at 843 cm-1 is assigned to the AsO43- ν3 antisymmetric stretching mode (d) the band at 813 cm-1 is ascribed to the AsO3OH2- ν3 antisymmetric stretching mode. Two Raman bands at 333 and 345 cm-1 are attributed to the ν2 AsO4 3- bending mode and a set of higher wavenumber bands are assigned to the ν4 AsO43- bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm-1. Two Raman bands at 2288 and 2438 cm-1 are ascribed to very strongly hydrogen bonded water. The broader Raman bands at 3152 and 3314 cm-1 may be assigned to adsorbed water and not so strongly hydrogen bonded water in the molecular structure of geminate. Two bands at 3448 and 3521 cm-1 are assigned to the OH stretching vibrations of the (AsO3OH)2- units. Raman spectroscopy identified Raman bands attributable to AsO43- and AsO3OH2- units.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units.
Resumo:
The success rate of carrier phase ambiguity resolution (AR) is the probability that the ambiguities are successfully fixed to their correct integer values. In existing works, an exact success rate formula for integer bootstrapping estimator has been used as a sharp lower bound for the integer least squares (ILS) success rate. Rigorous computation of success rate for the more general ILS solutions has been considered difficult, because of complexity of the ILS ambiguity pull-in region and computational load of the integration of the multivariate probability density function. Contributions of this work are twofold. First, the pull-in region mathematically expressed as the vertices of a polyhedron is represented by a multi-dimensional grid, at which the cumulative probability can be integrated with the multivariate normal cumulative density function (mvncdf) available in Matlab. The bivariate case is studied where the pull-region is usually defined as a hexagon and the probability is easily obtained using mvncdf at all the grid points within the convex polygon. Second, the paper compares the computed integer rounding and integer bootstrapping success rates, lower and upper bounds of the ILS success rates to the actual ILS AR success rates obtained from a 24 h GPS data set for a 21 km baseline. The results demonstrate that the upper bound probability of the ILS AR probability given in the existing literatures agrees with the actual ILS success rate well, although the success rate computed with integer bootstrapping method is a quite sharp approximation to the actual ILS success rate. The results also show that variations or uncertainty of the unit–weight variance estimates from epoch to epoch will affect the computed success rates from different methods significantly, thus deserving more attentions in order to obtain useful success probability predictions.
Resumo:
Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
Raman spectroscopy has been used to characterise nine hydrotalcites prepared from aluminate and magnesium solutions (magnesium chloride and seawater). The aluminate hydrotalcites are proposed to have the following formula Mg6Al2(OH)16(CO32-).xH2O, Mg6Al2(OH)16(CO32-,SO42-).xH2O, and Mg6Al2(OH)16(SO42-).xH2O. The synthesis of these hydrotalcites using seawater results in the intercalation of sulfate anions into the hydrotalcite interlayer. The spectra have been used to assess the molecular assembly of the cations and anions in the hydrotalcite structures. The spectra have been conveniently subdivided into spectral features based upon the carbonate anion, the hydroxyl units and water units. This investigation has shown the ideal conditions to form hydrotalcite from aluminate solutions is at pH 14 using magnesium chloride. Changes in synthesis conditions resulted in the formation of impurity products aragonite, thenardite, and gypsum.
Resumo:
Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
BACKGROUND. Physical symptoms are common in pregnancy and are predominantly associated with normal physiological changes. These symptoms have a social and economic cost, leading to absenteeism from work and additional medical interventions. There is currently no simple method for identifying common pregnancy related problems in the antenatal period. A validated tool, for use by pregnancy care providers would be useful. AIM: The aim of the project was to develop and validate a Pregnancy Symptoms Inventory for use by healthcare professionals (HCPs). METHODS: A list of symptoms was generated via expert consultation with midwives and obstetrician gynaecologists. Focus groups were conducted with pregnant women in their first, second or third trimester. The inventory was then tested for face validity and piloted for readability and comprehension. For test-re-test reliability, it was administered to the same women 2 to 3 days apart. Finally, outpatient midwives trialled the inventory for 1 month and rated its usefulness on a 10cm visual analogue scale (VAS). The number of referrals to other health care professionals was recorded during this month. RESULTS: Expert consultation and focus group discussions led to the generation of a 41-item inventory. Following face validity and readability testing, several items were modified. Individual item test re-test reliability was between .51 to 1 with the majority (34 items) scoring .0.70. During the testing phase, 211 surveys were collected in the 1 month trial. Tiredness (45.5%), poor sleep (27.5%) back pain (19.5%) and nausea (12.6%) were experienced often. Among the women surveyed, 16.2% claimed to sometimes or often be incontinent. Referrals to the incontinence nurse increased > 8 fold during the study period. The median rating by midwives of the ‘usefulness’ of the inventory was 8.4 (range 0.9 to 10). CONCLUSIONS: The Pregnancy Symptoms Inventory (PSI) was well accepted by women in the 1 month trial and may be a useful tool for pregnancy care providers and aids clinicians in early detection and subsequent treatment of symptoms. It shows promise for use in the research community for assessing the impact of lifestyle intervention in pregnancy.