993 resultados para fluorescence induction kinetics
Resumo:
The kinetics of the oxidation of electrodeposited boron powder and the boron powder produced by the reduction process were studied using thermogravimetry (TG). The oxidation was carried out by heating boron powder in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics. Model-free isoconversional method was used to derive the kinetics parameters. A two step oxidation reaction (exothermic) was observed. The oxidation reaction could not be completed due to the formation of glassy layer of boric oxide on the surface of boron powder which acts as a barrier for further diffusion of oxygen into the particle. The activation energy obtained using model-free method for electrodeposited boron is 122 +/- 7 kJ mol(-1) whereas a value of 205 +/- 9 kJ mol(-1) was obtained for boron produced by the reduction process (commercially procured boron). Mechanistic interpretation of the oxidation reaction was done using model based method. The activation energy was found to depend on the size distribution of the particles and specific surface area of the powder. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011
Resumo:
A new throttling system far SI engines is examined. The SMD of the fuel droplets in the induction system is measured to evaluate the performance of the new device with respect to the conventional throttle plate arrangement. The measurements are conducted at steady now conditions. A forward angular scattering technique with a He-Ne laser beam is used for droplet size measurement. The experiments are carried out with different mixture strength, stream velocity and throttle positions. It is observed that A/F ratio has no effect on SMD. However, stream velocity and throttle position have a significant influence on SMD. The new throttling method is found to be more effective in reducing the SMD, particularly at low throttle opening and high stream velocity compared to the conventional throttle plate.
Resumo:
Higher level of inversion is achieved with a less number of switches in the proposed scheme. The scheme proposes a five-level inverter for an open-end winding induction motor which uses only two DC-link rectifiers of voltage rating of Vdc/4, a neutral-point clamped (NPC) three-level inverter and a two-level inverter. Even though the two-level inverter is connected to the high-voltage side, it is always in square-wave operation. Since the two-level inverter is not switching in a pulse width modulated fashion and the magnitude of switching transient is only half compared to the convention three-level NPC inverter, the switching losses and electromagnetic interference is not so high. The scheme is experimentally verified on a 2.5 kW induction machine.
Resumo:
Time-resolved fluorescence studies were carried out on a series of free-base and zinc(II) derivatives of meso-tetraphenylporphyrins covalently linked to either 1,3-dinitrobenzene (DNB) or 1,3,5-trinitrobenzene (TNB) acceptor units. These acceptor units were linked at different sites (at the ortho, meta or para positions of one of the phenyl groups of meso-tetraphenylporphyrin) to the donor porphyrins such that the resulting isomeric intramolecular donor-acceptor complexes exhibit different centre-to-centre (ctc) distances and relative orientations. Biexponential fluorescence decay profiles observed for several of these covalently linked complexes were rationalized in terms of the presence of ''closed'' and ''extended'' conformers. Detailed analyses of the fluorescence decay data have provided a comprehensive understanding of the photoinduced electron transfer (PET) reactions occurring in systems containing zinc(II) porphyrin donors. It is observed that although DNB-linked zinc(II) complexes follow the trends predicted for the efficiency of PET with respect to donor-acceptor distance, the TNB-linked zinc(II) porphyrins exhibit a behaviour which is dictated by steric effects. Similarly, although the thermodynamic criteria predict a greater efficiency of charge separation in TNB-linked complexes compared with DNB-linked complexes, the reverse trend observed has been attributed to orientational effects. In the complexes containing free-base porphyrin donors, PET is expected to be less efficient from a thermodynamic viewpoint. In a few of these cases, fluorescence quenching seems to occur by parallel mechanisms other than PET.
Resumo:
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.
Resumo:
The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Micelles of different dimeric amphiphiles Br-, n-C(16)H(33)NMe(2)(+) -(CH)(m)-N(+)Me(2)-n-C16H33, Br- (where m = 3, 4, 5, 6, 8, 10, and 12) adapt different morphologies and internal packing arrangements in aqueous media depending on their spacer chain length (m). Detailed measurements of small angle neutron scattering (SANS) cross sections from different bis-cationic, dimeric surfactant micelles in aqueous media (D2O) are reported. The data have been analyzed using the Hayter and Penfold model for macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric micelles. The SANS analysis clearly indicated that the extent of aggregate growth and the variations of shapes of the dimeric micelles depend primarily on the spacer chain length. With spacer chain length, m less than or equal to 4, the propensity of micellar growth was particularly pronounced. The effects of the variation of the concentration of dimeric surfactants with m = 5 and 10 on the SANS spectra and the effects of the temperature variation for the micellar system with m = 10 were also examined. The critical micelle concentrations (cmc) and their microenvironmental feature, namely, the microviscosities that the dimeric micellar aggregates offer to a solubilized, extrinsic fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, were also determined. The changes of cmcs and microviscosities as a function of spacer chain length have been explained in terms of conformational variations and progressive looping of the spacer in micellar core upon increasing m values.
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.
Resumo:
The reactivation kinetics of passivated Mg acceptors in hydrogenated InP during unbiased annealing of a Schottky diode is reported. The reactivation is found to slow down gradually with annealing time and this phenomenon is attributed to substantial retrapping of H at the acceptor sites. It is found from the concentration profiles and the kinetics data that the reactivation is most likely limited by H2 molecule formation processes for longer annealing times; for shorter annealing times, contributions from in-diffusion of H also become significant. The diffusion of H during the initial period follows an Arrhenius relation with an activation energy for the effective diffusion coefficient of 1.13±0.10 eV. In the H2 formation regime, the reactivation is thermally activated with an activation energy for the annealing parameter of 1.71±0.10 eV. The H2 formation-limited regime of reactivation occurs sooner as the annealing temperature is increased.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
Cure kinetics for the formation of copolyurethane networks of various compositions based on hydroxy-terminated polybutadiene(HTPB), poly(12-hydroxy stearic acid-co-TMP) ester polyol(PEP), and different isocyanates has been studied through viscosity build up during the cure reaction. The viscosity (N)-time (t) plots conform to the equation N = ae(bt), where a and b are empirical constants, dependent on the composition and the nature of the polyols and the isocyanates. The rate constants (b) for viscosity build up, evaluated from the slopes of dN/dt versus N plots at different temperatures, were found to vary significantly from 0.0073 to 0.25 min(-1); and the activation energies for gelation were found to be in the range 20 to 40 kJ mol(-1). The results have been interpreted in terms of the dependence of the rate constants on structural characteristics of the prepolymers. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation-in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element, V-el.
Resumo:
The reactivation kinetics of passivated boron accepters in hydrogenated silicon during zero bias annealing in the temperature range of 65-130 degrees C are reported, For large annealing times and high annealing temperatures, the reactivation process follows second-order kinetics and is rate limited by a thermally activated <(H)over tilde (2)> complex formation process, For short annealing times and low annealing temperatures, the reactivation rate is found to be larger than that due to <(H)over tilde (2)> complex formation alone. We conclude that the faster reactivation is caused by the diffusion of the liberated hydrogen atoms into the bulk as well as <(H)over tilde (2)> complex formation. The effective diffusion coefficient of hydrogen is measured and found to obey the Arrhenius relation with an activation energy (1.41 +/- 0.1) eV. (C) 1997 American Institute of Physics.