642 resultados para fix
Resumo:
Many preanalytical variables affect the results of coagulation assays. A possible way to control some of them would be to accept blood specimens shipped in the original collection tube. The aim of our study was to investigate the stability of coagulation assays in citrated whole blood transported at ambient temperature for up to two days after specimen collection. Blood samples from 59 patients who attended our haematology outpatient ward for thrombophilia screening were transported at ambient temperature (outdoor during the day, indoor overnight) for following periods of time: <1 hour, 4-6, 8-12, 24-28 and 48-52 hours prior to centrifugation and plasma-freezing. The following coagulation tests were performed: PT, aPTT, fibrinogen, FII:C, FV:C, FVII:C, FVIII:C, FIX:C, FX:C, FXI:C, VWF:RCo, VWF:Ag, AT, PC activity, total and free PS antigen, modified APC-sensitivity-ratio, thrombin-antithrombin-complex and D-dimer. Clinically significant changes, defined as a percentage change of more than 10% from the initial value, were observed for FV:C, FVIII:C and total PS antigen starting at 24-28 hours, and for PT, aPTT and FVII:C at 48-52 hours. No statistically significant differences were seen for fibrinogen, antithrombin, or thrombin-antithrombin complexes (Friedman repeated measures analysis of variance). The present data suggest that the use of whole blood samples transported at ambient temperature may be an acceptable means of delivering specimens for coagulation analysis. With the exception of factor V and VIII coagulant activity, and total PS antigen all investigated parameters can be measured 24-28 hours after specimen collection without observing clinically relevant changes.
Resumo:
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Resumo:
BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.
Resumo:
Purpose: Development of an interpolation algorithm for re‐sampling spatially distributed CT‐data with the following features: global and local integral conservation, avoidance of negative interpolation values for positively defined datasets and the ability to control re‐sampling artifacts. Method and Materials: The interpolation can be separated into two steps: first, the discrete CT‐data has to be continuously distributed by an analytic function considering the boundary conditions. Generally, this function is determined by piecewise interpolation. Instead of using linear or high order polynomialinterpolations, which do not fulfill all the above mentioned features, a special form of Hermitian curve interpolation is used to solve the interpolation problem with respect to the required boundary conditions. A single parameter is determined, by which the behavior of the interpolation function is controlled. Second, the interpolated data have to be re‐distributed with respect to the requested grid. Results: The new algorithm was compared with commonly used interpolation functions based on linear and second order polynomial. It is demonstrated that these interpolation functions may over‐ or underestimate the source data by about 10%–20% while the parameter of the new algorithm can be adjusted in order to significantly reduce these interpolation errors. Finally, the performance and accuracy of the algorithm was tested by re‐gridding a series of X‐ray CT‐images. Conclusion: Inaccurate sampling values may occur due to the lack of integral conservation. Re‐sampling algorithms using high order polynomialinterpolation functions may result in significant artifacts of the re‐sampled data. Such artifacts can be avoided by using the new algorithm based on Hermitian curve interpolation
Resumo:
This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.
Resumo:
This report is a case study of how Mwangalala community accesses water and how that access is maintained. Mwangalala community is located in the northern tip of Karonga district in Malawi, Africa. The case study evaluates how close the community is to meeting target 10 of the Millennium Development Goals, sustainable access to safe drinking water, and evaluates the current water system through Human Centered Design’s criteria of desirability, feasibility, and viability. It also makes recommendations to improve water security in Mwangalala community. Data was collected through two years of immersive observation, interviews with 30 families, and observing two wells on three separate occasions. The 30 interviews provided a sample size of over 10% of the community’s population. Participants were initially self-selected and then invited to participate in the research. I walked along community pathways and accepted invitations to join casual conversations in family compounds. After conversing I asked the family members if they would be willing to participate in my research by talking with me about water. Data collected from the interviews and the observations of two wells were compared and analyzed for common themes. Shallow wells or open wells represented the primary water source for 93% of interview participants. Boreholes were also present in the community, but produced unpalatable water due to high concentrations of dissolved iron and were not used as primary water sources. During observations 75% of community members who used the shallow well, primarily used for consumptive uses like cooking or dinking, were females. Boreholes were primarily used for non-consumptive uses such as watering crops or bathing and 77% of the users were male. Shallow wells could remain in disrepair for two months because the repairman was a volunteer, who was not compensated for the skilled labor required to repair the wells. Community members thought the maintenance fee went towards his salary, so did not compensate the repairman when he performed work. This miscommunication provided no incentive for the repairman to make well repairs a priority, and left community members frustrated with untimely repairs. Shallow wells with functional pumps failed to provide water when the water table levels drop during dry season, forcing community members to seek secondary or tertiary water sources. Open wells, converted from shallow wells after community members did not pay for repairs to the pump, represented 44% of the wells originally installed with Mark V hand pumps. These wells whose pumps were not repaired were located in fields and one beside a church. The functional wells were all located on school grounds or in family compounds, where responsibility for the well’s maintenance is clearly defined. Mwangalala community fails to meet Millennium Development goals because the wells used by the community do not provide sustainable access to safe drinking water. Open wells, used by half the participants in the study, lack a top covering to prevent contamination from debris and wildlife. Shallow well repair times are unsustainable, taking longer than two weeks to be repaired, primarily because the repair persons are expected to provide skilled labor to repair the wells without compensation. Improving water security for Mwangalala can be achieved by improving repair times on shallow wells and making water from boreholes palatable. There are no incentives for a volunteer repair person to fix wells in a timely manner. Repair times can be improved by reducing the number of wells a repair person is responsible for and compensating the person for the skilled labor provided. Water security would be further improved by removing iron particulates from borehole water, thus rendering it palatable. This is possible through point of use filtration utilizing ceramic candles; this would make pumped water available year-round.
Resumo:
Clinical aspects of reconstruction with fix prosthesis and dental implants in a patient with a history of periodontitis is shown. A successful stabilization and rehabilitation of the periodontally involved dentition can be achieved with tooth-worn crown and bridge reconstructions. From a functional and aesthetic point of view the result may not be satisfying due to mobility and overlength of the teeth and open approximal spaces. Today, dentist and patient have often to weigh if teeth shall be maintained or replaced by dental implants. Thereby, both must be aware of the fact that in complex cases long-term success and aesthetic outcome may be difficult to predict. An intense discussion with the patient on his expectations, invasive treatment, risks with regard to biologic and prosthetic aspects is mandatory and must be based on the best scientific evidence available. The present case report shows different considerations and describes a radical solution which meets the patient's needs and is based on modern CAD-CAM technology.